Answer:
Cannot be determined from the given information
Explanation:
Given the following data;
Velocity = 24 m/s
Period = 3 seconds
To find the amplitude of the wave;
Mathematically, the amplitude of a wave is given by the formula;
x = Asin(ωt + ϕ)
Where;
x is displacement of the wave measured in meters.
A is the amplitude.
ω is the angular frequency measured in rad/s.
t is the time period measured in seconds.
ϕ is the phase angle.
Hence, the information provided in this exercise isn't sufficient to find the amplitude of the waveform.
However, the given parameters can be used to calculate the frequency and wavelength of the wave.
- Gravitational force depends only on mass and distance, not on the state of matter.
- The forces of attraction between molecules in matter are electromagnetic in nature, not gravitational.
- These attractive forces are stronger in a solid than in a liquid than in a gas.
- Gravitational forces between molecules is completely negligible compared to the em forces.
So, key answer is inter-molecular forces of solids is stronger than liquids.
To solve this problem it is necessary to apply the concepts related to the flow as a function of the volume in a certain time, as well as the potential and kinetic energy that act on the pump and the fluid.
The work done would be defined as

Where,
PE = Potential Energy
KE = Kinetic Energy

Where,
m = Mass
g = Gravitational energy
h = Height
v = Velocity
Considering power as the change of energy as a function of time we will then have to


The rate of mass flow is,

Where,
= Density of water
A = Area of the hose 
The given radius is 0.83cm or
m, so the Area would be


We have then that,



Final the power of the pump would be,



Therefore the power of the pump is 57.11W
This can be solve using the formula P = I^2 * Rwhere P is the powerI is the CurrentR is the resistanceP = I^2 * R
1/4 Watt = I^2 * 100 ohm solve for II^2 = 1/400 I = 0.05 amps then using the formula to solve for the voltage:V = I * RV = 0.05 amps * 100 ohms V = 5 volts
Answer:
While the use of the type of transformer in a rectifier depends on the voltage requirement or to meet desired operating conditions, a step-down transformer is used mainly to reduce the voltage. It is used to bring the high AC voltage level to a reasonable value or the desired output voltage.
Explanation:
Hope it helps
Correct me if Im wrong