Answer:
mgh= 10 x 8 x 10
= 800
but you can try 10 x 8 x 4^-1 x 10
Choices 'a', 'c', and 'd' are true.
In choice 'b', I'm not sure what it means when it says that masses
are 'balanced'. To me, masses are only balanced when they're on
a see-saw, or on opposite ends of a rope that goes over a pulley.
Maybe the statement means that the mass of the nucleus and the
mass of the electron cloud are equal. This is way false. It takes
more than 1,800 electrons to make the mass of ONE proton or
neutron, and the most complex atom in nature only has 92 electrons
in it. So there's no way that the masses of the nucleus and the electrons
in one atom could ever be anywhere near equal.
Answer:
the field at the center of solenoid 2 is 12 times the field at the center of solenoid 1.
Explanation:
Recall that the field inside a solenoid of length L, N turns, and a circulating current I, is given by the formula:
Then, if we assign the subindex "1" to the quantities that define the magnetic field (
) inside solenoid 1, we have:

notice that there is no dependence on the diameter of the solenoid for this formula.
Now, if we write a similar formula for solenoid 2, given that it has :
1) half the length of solenoid 1 . Then 
2) twice as many turns as solenoid 1. Then 
3) three times the current of solenoid 1. Then 
we obtain:

Answer:
Option c. (Both Technician A and B are correct)
Explanation:
A transmission system consists of 3 shafts. The input shaft, the counter shaft, and the main shaft. The clutch gear always rotates with input shaft and is a crucial element of the input shaft.
The counter shaft is actually several gears machined out of a single piece of steel. The counter shaft may also be called counter gear or cluster gear. It is a secondary shaft that runs parallel to the mainshaft in a gearbox and is used to provide powers to machine components such as the drive axle.
The main gears (also called the speed gears) on main shaft (also known as the output shaft) are used to transfer rotation from counter shaft to the output shaft.
Hence in the light of above description, both technician A and B are correct.
It’s hard to perfectly measure the distance something travels, as well as the exact time it takes, making the results have some variation.