Answer:
anaemia, low blood pressure etc.
Answer:
(a) The energy of the photon is 1.632 x
J.
(b) The wavelength of the photon is 1.2 x
m.
(c) The frequency of the photon is 2.47 x
Hz.
Explanation:
Let;
= -13.60 ev
= -3.40 ev
(a) Energy of the emitted photon can be determined as;
-
= -3.40 - (-13.60)
= -3.40 + 13.60
= 10.20 eV
= 10.20(1.6 x
)
-
= 1.632 x
Joules
The energy of the emitted photon is 10.20 eV (or 1.632 x
Joules).
(b) The wavelength, λ, can be determined as;
E = (hc)/ λ
where: E is the energy of the photon, h is the Planck's constant (6.6 x
Js), c is the speed of light (3 x
m/s) and λ is the wavelength.
10.20(1.6 x
) = (6.6 x
* 3 x
)/ λ
λ = 
= 1.213 x 
Wavelength of the photon is 1.2 x
m.
(c) The frequency can be determined by;
E = hf
where f is the frequency of the photon.
1.632 x
= 6.6 x
x f
f = 
= 2.47 x
Hz
Frequency of the emitted photon is 2.47 x
Hz.
52800000000000000000000000000000000000000000
Answer:
400000
Explanation:
So first solve one part:
(3.25 * 10^5)
(3.25 * 100,000)
= 325000
Then solve the next part:
(7.5 * 10^4)
(7.5 * 10000)
= 75000
Now lastly, add the two answers:
325000 + 75000 = 400000
Therefore,
(3.25 x 10^5) + (7.5 x 10^4) = 400000
To solve this problem it is necessary to apply the concepts related to the change of Energy in photons and the conservation of energy.
From the theory we could consider that the energy change is subject to

Where
Initial Energy
Energy loses
Replacing we have that


Therefore the Kinetic energy of the electron once it has broken free of the metal surface is 0.8eV