Answer: dont ever worry mate
Explanation:
Answer:
The distance spring compresses (x) = 0.0811 m
Explanation:
Spring constant (k) = 185 N / m
mass (m) = 1.53 kg
When mass is placed upon the spring the spring force is equal to weight of the mass.
⇒ Spring force (F) = weight of object
⇒ Spring force (F) = k × x
And weight of the object = mg
⇒ k x = mg -----------------(1)
Put all the values in equation (1) we get
⇒ 185 × x = 1.53 × 9.81
⇒ x = 0.0811 m
This the distance spring compresses, when mass is placed upon it.
(a) The period of the oscillation is 0.8 s.
(b) The frequency of the oscillation is 1.25 Hz.
(c) The angular frequency of the oscillation is 7.885 rad/s.
(d) The amplitude of the oscillation is 3 cm.
(e) The force constant of the spring is 148.1 N/m.
The given parameters:
- <em>Mass of the ball, m = 2.4 kg</em>
<em />
From the given graph, we can determine the missing parameters.
The amplitude of the wave is the maximum displacement, A = 3 cm
The period of the oscillation is the time taken to make one complete cycle.
T = 0.8 s
The frequency of the oscillation is calculated as follows;

The angular frequency of the oscillation is calculated as follows;

The force constant of the spring is calculated as follows;

Learn more about general wave equation here: brainly.com/question/25699025
If the springs are connected together from end to end, they are arranged in series. For springs in series, the forces are additive.
Spring 1: F1 = k1(Δx1)
Spring 2: F2 = k2(Δx2)
Spring 1: F3 = k3(Δx3)
Total Force = k1(Δx1)+k2(Δx2)+k3(Δx3)
Total Force = (k1+k2+k3)(Δx,total)
The spring constants are added together and multiplied with the total length of elongation to find the total force acting on it.