The freezing point ..... :)
The correct answer is:

Let's see why.
1 amu corresponds to the mass of the proton, which is:

if we convert this into energy, using Einstein equivalence between mass and energy, we find:

Now we can convert it into electronvolts:

So, 1 amu = 934 MeV. Therefore, 3 amu corresponds to 3 times this value:
The force which has the greatest effect on causing this object to slow while it remains in contact with the ramp is: B. a frictional force.
<h3>What is a force?</h3>
A force can be defined as a push or pull of an object or physical body, which typically results in a change of motion (acceleration), especially due to the interaction of the object with another.
<h3>The types of force.</h3>
In Science, there are different types of force and these include the following:
<h3>What is a
frictional force?</h3>
Friction force can be defined as a type of force that resists and slows the relative motion of two physical objects when there surfaces come in contact. This ultimately implies that, a frictional force prevents two surfaces from easily sliding over or slipping across one another.
In this context, we can infer and logically deduce that the force which has the greatest effect on causing this object to slow while it remains in contact with the ramp is a frictional force.
Read more on frictional force here: brainly.com/question/25253774
#SPJ1
Complete Question:
Brandon pushes an object on a ramp as shown in the diagram.
While Brandon pushes the object and it remains in contact the ramp, which force has the greatest effect on causing it to slow?
A. the applied force
B. a frictional force
C. the force due to gravity
D. a force of air resistance
Answer:
Explanation:650
colour* wavelength (nm) energy (eV)
red 650 1.91
orange 600 2.06
yellow 580 2.14
green 550 2.25
Answer:
176 min
Explanation:
456 g = .456 kg
Specific heat of ice s = 2093 J kg⁻¹
Heat required to raise the temperature by 25 degree
= mass x specific heat x rise in temperature.
= .456 x 2093 x 25
=23860 J
Heat required to melt the ice to make water at zero degree
= mass x latent heat
= .456 x 334 x 10³
=152304 J
Total heat required = 152304 + 23860 = 176164 J .
Time Required = Heat required / rate of supply of heat
= 176164 / 1000
176.16 min