Answer:
A concave mirror is used as a torch reflector. ... When a light bulb is placed at the focus of a concave mirror reflector, the diverging light rays of the bulb are collected by the reflector. These rays are then reflected to produce a strong, parallel-sided beam of light.
Explanation:
Answer:
D. Calculate the area under the graph.
Explanation:
The distance made during a particular period of time is calculated as (distance in m) = (velocity in m/s) * (time in s)
You can think of such a calculation as determining the area of a rectangle whose sides are velocity and time period. If you make the time period very very small, the rectangle will become a narrow "bar" - a bar with height determined by the average velocity during that corresponding short period of time. The area is, again, the distance made during that time. Now, you can cover the entire area under the curve using such narrow bars. Their areas adds up, approximately, to the total distance made over the entire span of motion. From this you can already see why the answer D is the correct one.
Going even further, one can make the rectangular bars arbitrarily narrow and cover the area under the curve with more and more of these. In fact, in the limit, this is something called a Riemann sum and leads to the definition of the Riemann integral. Using calculus, the area under a curve (hence the distance in this case) can be calculated precisely, under certain existence criteria.
<span>A center-seeking force related to acceleration is centripetal force. The answer is letter A. The rest of the choices do not answer the question above.</span>
The tank has a volume of
, where
is its height and
is its radius.
At any point, the water filling the tank and the tank itself form a pair of similar triangles (see the attached picture) from which we obtain the following relationship:

The volume of water in the tank at any given time is

and can be expressed as a function of the water level alone:

Implicity differentiating both sides with respect to time
gives

We're told the water level rises at a rate of
at the time when the water level is
, so the net change in the volume of water
can be computed:

The net rate of change in volume is the difference between the rate at which water is pumped into the tank and the rate at which it is leaking out:

We're told the water is leaking out at a rate of
, so we find the rate at which it's being pumped in to be

