Answer:
a) 4.94e9 J b) 1.07e10 J
Explanation:
The electric potential energy stored in a capacitor, expressed in terms of the value of the capacitance C, and the voltage between its terminals V, is as follows:

a) For the original capacitor, we can find directly U as follows:
U = 4.94*10⁹ J
b) Prior to find the electric potential energy of the upgraded capacitor, we need to find out the value of the capacitance C of this capacitor, which is identical to the original, except that has a different dielectric constant.
As the capacitance is proportional to the dielectric constant, we can write the following proportion:
ε₂ / ε₁ = 

Once calculated the new value of the capacitance, as V remains the same, we can find the electric potential energy for the upgraded capacitor as follows:

⇒ U = 1.07*10¹⁰ J
The choices for this question can be found elsewhere and as follows:
short hill.
tall hill.
tightly coiled spring.
<span>stretched-out spring.
</span>
I think the best answer is the third option. A high amplitude sound wave can best be compared to a tightly coiled spring. <span>A </span>high<span> energy </span>wave<span> is characterized by having a </span><span>high amplitude.</span>
Answer: Charles' Law: The Temperature-Volume Law. This law states that the volume of a given amount of gas held at constant pressure is directly proportional to the Kelvin temperature. As the volume goes up, the temperature also goes up, and vice-versa.
Explanation:Charles Law
In my opinion the answer is false