1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena-2011 [213]
2 years ago
7

Can you make predictions about the Moon's appearance?

Physics
1 answer:
Digiron [165]2 years ago
5 0

Answer:

answer: no

Explanation:

You might be interested in
A particle of mass m moves under the influence of a force given by F = (−kx + kx3/α2) where k and α are positive constants. a) F
Romashka-Z-Leto [24]

Answer:

Explanation:

a ) F = (-kx + kx³/a²)

intensity of field

I = F / m

=  (-kx + kx³/a²) / m

If U be potential function

- dU / dx =  (-kx + kx³/a²) / m

U(x)  = ∫  (kx - kx³/a²) / m dx

= k/m ( x²/2 - x⁴/4a²)

b )

For equilibrium points , U is either maximum or minimum .

dU / dx = x - 4x³/4a² = 0

x = ± a.

dU / dx = x - x³/a²

Again differentiating

d²U / dx² = 1 - 3x² / a²

Put the value of x = ± a.

we get

d²U / dx²  = -2 ( negative )

So at x = ± a , potential energy U is maximum.

c )

U =  k/m ( x²/2 - x⁴/4a²)

When x =0 , U = 0

When x=  ± a.

U is maximum

So the shape of the U-x curve is like a bowl centered at x = 0

d ) Maximum potential energy

put x = a or -a in

U(max)  =  k/m ( x²/2 - x⁴/4a²)

= k/m ( a² / 2 - a⁴/4a²)

= k/m ( a² / 2 - a²/4)

a²k / 4m

This is the maximum total energy where kinetic energy is zero.

4 0
3 years ago
The free-fall acceleration at the surface of planet 1 is 22 m/s^2. The radius and the mass of planet 2 are twice those of planet
algol13

Answer:

g₂ = 11 m/s²

Explanation:

The value of free-fall acceleration on the surface of a planet is given by the following formula:

g = \frac{Gm}{r^2}

where,

g = free-fall acceleration

G = Universal Gravitational Constant

m = mass of the planet

r = radius of planet

FOR PLANET 1:

g_1 = \frac{Gm_1}{r_1^2}\\\\\frac{Gm_1}{r_1^2} = 22 m/s^2 --------------------- equation (1)

FOR PLANET 2:

g_2 = \frac{Gm_2}{r_2^2}\\\\g_2 = \frac{G(2m_1)}{(2r_1)^2}\\\\g_2 = \frac{1}{2}\frac{Gm_1}{r_1^2}\\\\

using equation (1):

g_2 = \frac{g_1}{2}\\\\g_2 = \frac{22\ m/s^2}{2}

<u>g₂ = 11 m/s²</u>

8 0
2 years ago
Which of Kepler's laws states that planets sweep areas in equal times?
rodikova [14]
Keplers laws states that planets sweep areas in equal times is second
8 0
3 years ago
Marco was looking at this picture of two boats sitting differently in the water. He decided to compare the way the two boats sit
IgorLugansk [536]

Answer:

b

Explanation:

6 0
3 years ago
Which nucleus completes the following equation?
natka813 [3]
the answer is C




IGNORW irritating but not even on the golden bath bath and
3 0
3 years ago
Other questions:
  • The movement of deep ocean currents is mainly caused by:?
    6·1 answer
  • You drop a 14-g ball from a height of 1.5 m and it only bounces back to a height of 0.85 m. what was the total impulse on the ba
    6·2 answers
  • Potential energy of an apple is 6j. the apple is 3.00m high. what is the mass of the apple?​
    13·1 answer
  • What is the mechanical advantage of a wedge that is 2 inches at its widest part and has a sloped side with a length of 10 inches
    12·1 answer
  • A worker is pushing a crate of tools up a ramp into a truck. The crate has a mass of 120 kg and is accelerating at a rate of 1.0
    5·1 answer
  • Select the correct answer.
    11·1 answer
  • Which of the following electromagnets is the strongest? Why?​
    6·1 answer
  • 1) Use SolidWorks (SW) FEA to apply a bending load of 600 lbf on the right end of the stepped shaft as shown below. This is the
    9·1 answer
  • What clouds are best associated with thunderstorms?
    5·1 answer
  • If a peregrine falcon dove at its maximum speed for half a mile to catch prey, how many seconds would the dive take? (round your
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!