Answer:
In an inverse relationship, when one variable increases, the other variable decreases.
Explanation:
Hope this helps! ^^
perimeter of a rectangle = 2(L+B)
90=2(L+B)
90/2=L+B
45=L+B
I think it's the letter Did (this has to be 20 characters long) it would be Different or would be D
Answer: 80m
Explanation:
Distance of balloon to the ground is 3150m
Let the distance of Menin's pocket to the ground be x
Let the distance between Menin's pocket to the balloon be y
Hence, x=3150-y------1
Using the equation of motion,
V^2= U^s + 2gs--------2
U= initial speed is 0m/s
g is replaced with a since the acceleration is under gravity (g) and not straight line (a), hence g is taken as 10m/s
40m/s is contant since U (the coin is at rest is 0) hence V =40m/s
Slotting our values into equation 2
40^2= 0^2 + 2 * 10* (3150-y)
1600 = 0 + 63000 - 20y
1600 - 63000 = - 20y
-61400 = - 20y minus cancel out minus on both sides of the equation
61400 = 20y
Hence y = 61400/20
3070m
Hence, recall equation 1
x = 3150 - 3070
80m
I hope this solve the problem.
In scientific terms, ultrasound is a sound pressure, cyclic in nature, that has a greater frequency than the limit at the top of human hearing capabilities. What this means is that an ultrasonic sound can’t be heard by the human ear because their frequency is too high for our ears to pick up. In healthy young adults, this upper hearing capability is an average of 20 kilohertz. Ultrasound has many applications in several fields. Perhaps the best known application for ultrasound is sonography. This is where medical staff use the high pitched noise to produce a picture of a fetus while in the mother’s womb. Another use however, doesn’t directly concern humans at all. Bats use the high pitched noises to see in the dark and get an accurate reading on their preys internal structure. A popular belief is that an ultrasonic sound has the ability to turn the locking mechanism in a door lock, as demonstrated on some spy movies. On the opposite side of this are infrasonic sounds. These are noises with a frequency less than the lowest level of human hearing capabilities is 20 hertz. It is possible for humans to perceive infrasonic sounds, but only if the air pressure is sufficient. Although the war is the main tool for hearing these low sounds, it is possible for other parts of the body to “feel them”. Infrasound can be used to send signals in the army to special machines that can pick them up. These can be used to transmit vital data. Animals are able to pick up some low infrasonic noises which warn them of natural disasters before they happen, generally earthquakes and tsunamis.
I hope some of this information I gave you can help you. I came up with everything myself to help you.