1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rom4ik [11]
3 years ago
5

Students perform an experiment in which they drop two eggs with equal mass from a balcony. In the first trial, the egg hits the

ground and breaks. In the second trial, the egg hits a foam cushion and does not break or bounce. what conclusions about impulse can the students make?
Physics
2 answers:
shepuryov [24]3 years ago
8 0

<u> Answer </u>

The impulse on the second trial is smaller is smaller than in the first trial.

<u>Explanation </u>

Impose of a body is that change in momentum during a time interval. If the change of momentum takes longer then, the impulse of a force is less. I a moving object hits a hard surface the rate of change of momentum is very high. e.i in the first trial, the egg breaks because it hits the hard surface(ground).

In the second trial, the foam cushion absorbs the shock and prolongs the time of impact with the egg hence decreasing the impulse.


lapo4ka [179]3 years ago
4 0

Answer: the impact time increases, the impact force decreases.

Explanation:

In the second trial, the impulse is greater.

Impulse = F Δt = Δ P

In the second trial, the egg hits a foam cushion. This increases the time to impact increasing the impulse. In a closed system, the total momentum remains conserved. Thus, the impact time increases, the impact force decreases. Thus, the egg does not break.

You might be interested in
Which statement describes Redi’s experiment, which helped disprove spontaneous generation?
Kay [80]

Answer:

He examined covered and uncovered meat to determine that maggots came from eggs.

In other other words A

5 0
3 years ago
Read 2 more answers
Which factor is least likely to limit the rate of photosynthesis?
madreJ [45]

Answer:

oxygen concentration

Explanation:

8 0
3 years ago
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
regrine falcons frequently grab prey birds from the air. Sometimes they strike at high enough speeds that the force of the impac
solmaris [256]

Answers:

a) 30 m/s

b) 480 N

Explanation:

The rest of the question is written below:

a. What is the final speed of the falcon and pigeon?

b. What is the average force on the pigeon during the impact?

<h3>a) Final speed</h3>

This part can be solved by the Conservation of linear momentum principle, which establishes the initial momentum p_{i} before the collision must be equal to the final momentum p_{f} after the collision:

p_{i}=p_{f} (1)

Being:

p_{i}=MV_{i}+mU_{i}

p_{f}=(M+m) V

Where:

M=480 g \frac{1 kg}{1000 g}=0.48 kg the mas of the peregrine falcon

V_{i}=45 m/s the initial speed of the falcon

m=240 g \frac{1 kg}{1000 g}=0.24 kg is the mass of the pigeon

U_{i}=0 m/s the initial speed of the pigeon (at rest)

V the final speed of the system falcon-pigeon

Then:

MV_{i}+mU_{i}=(M+m) V (2)

Finding V:

V=\frac{MV_{i}}{M+m} (3)

V=\frac{(0.48 kg)(45 m/s)}{0.48 kg+0.24 kg} (4)

V=30 m/s (5) This is the final speed

<h3>b) Force on the pigeon</h3>

In this part we will use the following equation:

F=\frac{\Delta p}{\Delta t} (6)

Where:

F is the force exerted on the pigeon

\Delta t=0.015 s is the time

\Delta p is the pigeon's change in momentum

Then:

\Delta p=p_{f}-p_{i}=mV-mU_{i} (7)

\Delta p=mV (8) Since U_{i}=0

Substituting (8) in (6):

F=\frac{mV}{\Delta t} (9)

F=\frac{(0.24 kg)(30 m/s)}{0.015 s} (10)

Finally:

F=480 N

7 0
3 years ago
As you can see, my cousin has a lot of hair. He uses an 1800 W blow dryer and it takes him
maw [93]

Power = 1800W (or 1.8KW by dividing by 1000)

Time = 3 hours

Power = energy/ time

1.8KW = energy/ 3

x3

5.4Kw/h= energy

(5.4KJ or 5400J used)

$0.15 Kw/h

$0.15 X 5.4 = 0.81

Thus, cost $0.81

Hope this helps!

5 0
1 year ago
Other questions:
  • A glass of water has a temperature of 8°c. in which situation will more energy be transferred, when the air's temperature is 25°
    9·1 answer
  • What is the velocity of a beam of electrons that goes undeflected when moving perpendicular to an electric and magnetic fields.
    6·1 answer
  • A 120 g coconut falls 12 m. What is the kinetic energy of the coconut just before it hits the ground?
    13·1 answer
  • Can someone please help me!
    5·1 answer
  • What statement is true because of Newton's Second Law?
    10·2 answers
  • A turtle is moving at a speed of 1.5 m/s for a time of 120 s. What is the distance the turtle travels?
    11·2 answers
  • I will give BRAINLIEST.... ln the diagram below the system is in equilibrium. Determine the value of F1 in Newton​
    9·1 answer
  • The mass of an object is 84 kg. Find its weight on the Earth and the Moon.​
    5·2 answers
  • What do the tropopause stratopause and mesopause have in common
    5·1 answer
  • The student lets the toy car roll down the slope. describe how the student could find, by experiment the speed of the toy car at
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!