1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
5

A cheetah can go from the state of rest to running at 20m/s in just two seconds. What is the Cheetahs average acceleration

Physics
1 answer:
babymother [125]3 years ago
7 0

acceleration = change in velocity/change in time

so...

a = 20 m/s / 2 seconds

a = 10


hope that helps :)

P.S. found this from Brainly User, sometimes all you have to do is search to find the answer.

You might be interested in
A hockey player swings her hockey stick and strikes a puck. According to Newtons 3rd law of motion which of the following is a r
Korvikt [17]

<u>Complete Question:</u>

A hockey player swings her hockey stick and strikes a puck. According to Newton’s third law of motion, which of the following is a reaction to the stick pushing on the puck?

A. the puck pushing on the stick .

B. the stick pushing on the player .

C. the player pushing on the stick .

D. the puck pushing on the player.

<u>Correct Option:</u>

According to Newton’s third law of motion the puck pushing on the stick is a reaction to the stick pushing on the puck.

<u>Option: A</u>

<u>Explanation:</u>

As when the hockey exert force on the puck (which is a flat ball basically used in ice hockey) then this action by hockey will receive equal and opposite reaction by puck. Thus when the stick is pushing on the this flat ball, then puck also push the stick. This is understood by newton's third law pf motion, where action and reaction forces are subject of discussion, displaying their is pair of forces applied among the interacting objects. This form is observed more practically in life and very frequent.

3 0
3 years ago
A builder drops a brick from a height of 15 m above the ground. The gravitational field strength g is 10 N/ kg. What is the spee
Basile [38]

The speed of the brick dropped by the builder as it hits the ground is 17.32m/s.

Given the data in the question;

Since the brick was initially at rest before it was dropped,

  • Initial Velocity; u = 0
  • Height from which it has dropped; h = 15m
  • Gravitational field strength; g = 10N/kg = 10 \frac{kg.m/s^2}{kg} = 10m/s^2

Final speed of brick as it hits the ground; v =  \ ?

<h3>Velocity</h3>

velocity is simply the same as the speed at which a particle or object moves. It is the rate of change of position of an object or particle with respect to time. As expressed in the Third Equation of Motion:

v^2 = u^2 + 2gh

Where v is final velocity, u is initial velocity, h is its height or distance from ground and g is gravitational field strength.

To determine the speed of the brick as it hits the ground, we substitute our giving values into the expression above.

v^2 = u^2 + 2gh\\\\v^2 = 0 + ( 2\ *\ 10m/s^2\ *\ 15m)\\\\v^2 = 300m^2/s^2\\\\v = \sqrt{300m^2/s^2}\\ \\v = 17.32m/s

Therefore, the speed of the brick dropped by the builder as it hits the ground is 17.32m/s.

Learn more about equations of motion: brainly.com/question/18486505

8 0
2 years ago
Use the information below to answer questions
Ulleksa [173]

Answer:

The charges are q₁  = 2 × 10⁻⁸ C and  q₂ = 3 × 10⁻⁸ C

Explanation:

Here is the complete question

Two identical tiny balls have charge q1 and q2. The repulsive force one exerts on the other when they are 20cm apart is 1.35 X 10-4 N. after the balls are touched together and then represented once again to 20cm, now the repulsive force is found to be 1.40 X 10-4 N. find the charges q1 and q2.

Solution

The force F = 1.35 × 10⁻⁴ N when the charges are separated a distance of r = 20 cm = 0.2 m is given by

F = kq₁q₂/r₁²

q₁q₂ = Fr₁²/k

q₁q₂ = 1.35 × 10⁻⁴ N × (0.2 m)²/9 × 10⁹ Nm²/C² = 0.054/9 × 10⁻¹³ C² = 0.006 × 10⁻¹³ C² = 6 × 10⁻¹⁶ C²

q₁q₂ = 6 × 10⁻¹⁶ C² (1)

When the charges are brought together, the charge is now q = (q₁ + q₂)/2

The new repulsive force F = 1.406 × 10⁻⁴ N  at a distance of r₂ = 20 cm = 0.2 m is then

F₂ = kq²/r₂²

q² = F₂r₂²/k = 1.406 × 10⁻⁴ N × (0.2 m)²/9 × 10⁹ Nm²/C² = 0.00625 × 10⁻¹³ C² = 6.25 × 10⁻¹⁶ C²

q² = 6.25 × 10⁻¹⁶ C²

q = √(6.25 × 10⁻¹⁶) C

q = 2.5 × 10⁻⁸ C

(q₁ + q₂)/2 =  2.5 × 10⁻⁸ C

(q₁ + q₂) = 2 × 2.5 × 10⁻⁸ C

q₁ + q₂ = 5 × 10⁻⁸ C (2)

q₁  = 5 × 10⁻⁸ C - q₂  (3)

Substituting equation (3) into (1), we have

(5 × 10⁻⁸ C - q₂)q₂ = 6 × 10⁻¹⁶ C²

Expanding the bracket, we have

(5 × 10⁻⁸ C)q₂ - q₂² = 6 × 10⁻¹⁶ C²

So, q₂² - (5 × 10⁻⁸ C)q₂ + 6 × 10⁻¹⁶ C² = 0

Using the quadratic formula to find q₂

q_{2} = \frac{-(-5 X 10^{-8} )+/- \sqrt{(-5 X 10^{-8} )^{2} - 4X1X6 X 10^{-16} } }{2X1}\\  = \frac{5 X 10^{-8} )+/- \sqrt{25 X 10^{-16}  - 24 X 10^{-16} } }{2}\\= \frac{5 X 10^{-8} )+/- \sqrt{1 X 10^{-16} } }{2}\\= \frac{5 X 10^{-8} )+/- 1 X 10^{-8} }{2}\\= \frac{5 X 10^{-8} + 1 X 10^{-8} }{2} or \frac{5 X 10^{-8}  - 1 X 10^{-8} }{2}\\= \frac{6 X 10^{-8} }{2} or \frac{4 X 10^{-8}}{2}\\= 3 X 10^{-8} C or 2 X 10^{-8} C

q₁  = 5 × 10⁻⁸ C - q₂

q₁  = 5 × 10⁻⁸ C - 3 × 10⁻⁸ C or 5 × 10⁻⁸ C - 2 × 10⁻⁸ C

q₁  = 2 × 10⁻⁸ C or 3 × 10⁻⁸ C

So the charges are q₁  = 2 × 10⁻⁸ C and  q₂ = 3 × 10⁻⁸ C

5 0
4 years ago
An instructor gives a demonstration in which he makes a standing wave on a long thin slinky. The slinky is 6.0 meters long. If y
Naily [24]

The characteristics of standing waves allows to find the result for the speed of the wave is:

  • The speed wave is:  v = 10 m / s

The wave is a way of transmitting energy without mass displacement, , in the attachment we can see a diagram of the standing wave.

Each cycle corresponds to half a wavelength,  they indicate that the frequency is 2.50 Hz and there are three cycles, so the wavelength is:

      L = n \frac{\lambda}{2}

      λ = 2L/n

      λ = 2 6 /3

       λ = 4 m

Wave speed is related to wavelength and frequency

        v = λ f

         v = 4 2.5

         v = 10 m / s

In conclusion, using the characteristics of standing waves we can find the result for the speed of the wave is:

  • The wave speed is:   v = 10 m / s

Learn more here: brainly.com/question/12536719

8 0
3 years ago
When the heart beats faster, blood vessels need to _____ more.<br> open <br> close move
Yuki888 [10]
I'm pretty sure it is open more
6 0
4 years ago
Read 2 more answers
Other questions:
  • What is the significance of the discovery of exoplanets?
    12·2 answers
  • 40 POINTS CORRECT ANSWER
    13·1 answer
  • Which of the following describes a chemical change
    15·2 answers
  • Emily holds a banana of mass m over the edge of a bridge of height h. She drops the banana and it falls to the river below. What
    9·1 answer
  • Photons are also known as beta particles. (true or false)
    7·1 answer
  • 1.What is true about heat capacity and specific heat?
    6·1 answer
  • Dicuss the law of conservation of energy. Provide atleast one example that supports your description
    5·2 answers
  • A railroad car containing an angry bull is standing onthe
    14·1 answer
  • If a rock is thrown upward on the planet Mars with a velocity of 10 ms, its height in meters seconds later is given by (a) Find
    10·1 answer
  • Why do we add alcohol/ethanol to the leaf once it is boiled?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!