The final pressure of the gas in the container is 4 atm
From the question given above, the following data were obtained:
Initial volume (V₁) = 4 L
Initial temperature (T₁) = 300 K
Initial pressure (P₁) = 1 atm
Final temperature (T₂) = 600 K
Final volume (V₂) = 2 L
<h3>Final pressure (P₂) =?</h3>
- Using the combine gas equation, we can obtain the final pressure of the gas as illustrated below:

Cross multiply
300 × 2 × P₂ = 4 × 600
600 × P₂ = 2400
Divide both side by 600

<h3>P₂ = 4 atm</h3>
Therefore, the final pressure of gas is 4 atm.
Learn more: brainly.com/question/23558057
Answer:
Sulfur
Explanation:
You find the identity by looking at the number of protons. The number of protons never change for an element.
Answer:
0.971 grams
Explanation:
Given:
Temperature = 3.0° C = 3 + 273 = 276 K
Volume, V = 5.0 L
Pressure, P = 0.100 atm
Now, from the relation
PV = nRT
where,
n is the number of moles,
R is the ideal gas constant = 0.082057 L atm/mol.K
thus,
0.1 × 5 = n × 0.082057 × 276
or
n = 0.022 moles
Also,
Molar mass of the Dinitrogen monoxide gas (N₂O)
= 2 × Molar mass of nitrogen + 1 × Molar mass of oxygen
= 2 × 14 + 16 = 44 grams/mol
Therefore, Mass of 0.022 moles of N₂O = 0.022 × 44 = 0.971 grams
Charge ion for Mg is 2+
While 2+ is represents two electrons that had been released. It donors two electrons to oxide ions as oxide ions are 2-. 2- is represents as electron acceptor for two electrons. At the end, the empirical formula for this reaction is Mg2O2
Pressure since pressure is defined as force per unit area and the molecules exert a force on the walls of the container when they bombard it