Both the increase in the boling point and the depression on the freezing point are colliative properties.
This is, they are proportional to the number of particles dissolved in the solvent, which is measured by the molality of the solution and the factor i (Van'f Hoff).
The answer to the question is that 1) the boling point of a solution of water and calcium chloride at standard pressure will be higher than the normal boiling point of pure water, and 2) the freezing point of a solution of water and calcium chloride at standard pressure will be lower than the normal freezing point of pure water.
The correct scientific instrument is telescope.
I believe the answer you are looking for is Static Friction. Static Friction is the force that holds an object in place until it starts to move. Then it switches to rolling friction.
For example, if you have a 1/2 ton truck sitting in front of you and the truck is in neutral. (meaning it can roll if pushed). The truck is extremely hard to move at first. That is because static friction is holding it in place until the amount of force exceeds the limit of static friction.
So if we continue to push at the truck and you feel it starting to move, then once it starts moving it is much easier to push, that is because we moved past static friction to rolling friction. Rolling friction is what helps slow things down. If you roll a ball across a carpet floor it eventually comes to a stop.
Answer:
Magnesium + iron chloride → iron + magnesium chloride
Explanation:
It is the single replacement reaction.
Single replacement:
It is the reaction in which one elements replace the other element in compound.
AB + C → AC + B
Molecular equation:
Magnesium + iron chloride → iron + magnesium chloride
Chemical equation:
Mg(s) + FeCl₂(aq) → MgCl₂(aq) + Fe(s)
Ionic equation:
Mg(s) + Fe²⁺(aq) + 2Cl⁻(aq) → Mg²⁺(aq) + 2Cl⁻(aq) + Fe(s)
Net ionic equation:
Mg(s) + Fe²⁺(aq) → Fe(s) + Mg²⁺(aq)
A! Oxidize. Hope this helps!