117 m/sec is the speed of a transverse wave in a rope of length 3. 1 m and mass 86 g under a tension of 380 n.
The wave speed v is given by
v= √τ/μ
where τ is the tension in the rope and μ is the linear mass density of the rope.
The linear mass density is the mass per unit length of rope :
μ= m / L = (0.086 kg)/(3.1 m)=0.0277 kg/m.
v=
= 117.125 m/sec (approx. 117 m/sec
In physics, a transverse wave is a wave whose oscillations are perpendicular to the direction of the wave's advance. This is in contrast to a longitudinal wave which travels in the direction of its oscillations. Water waves are an example of transverse wave.
Transverse waves commonly occur in elastic solids due to the shear stress generated; the oscillations in this case are the displacement of the solid particles away from their relaxed position, in directions perpendicular to the propagation of the wave. These displacements correspond to a local shear deformation of the material. Hence a transverse wave of this nature is called a shear wave. Since fluids cannot resist shear forces while at rest, propagation of transverse waves inside the bulk of fluids is not possible.
Learn more about Transverse waves here : brainly.com/question/13761336
#SPJ4
Answer:
1 mole of H2O is 18 grams (2 g H + 16 g Oxygen)
36 / 18 = 2
So 2 moles = 2 * 6.02E23 = 12.04E23 = 1.204E24
Force acting during collision is internal so momentum is conserve
so (initial momentum = final momentum) in both directions
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1150 kg and was approaching at 5.00 m/s due south. The second car has a mass of 750 kg and was approaching at 25.0 m/s due west.
Let Vx is and Vy are final velocities of car in +x and +y direction respectively.
initial momentum in +ve x (east) direction = final momentum in +ve x direction (east)
- 750*25 + 1150*0 = (750+1150)
Vx
initial momentum in +ve y (north) direction = final momentum in +ve y direction (north)
750*0 - 1150*5 = (750+1150)
Vy
from here you can calculate Vx and Vy
so final velocity V is
<span>V=<span>(√</span><span>V2x</span>+<span>V2y</span>)
</span>
and angle make from +ve x axis is
<span>θ=<span>tan<span>−1</span></span>(<span><span>Vy</span><span>Vx</span></span>)
</span><span>
kinetic energy loss in the collision = final KE - initial KE</span>
Answer:
DO NOT DOWNLOAD THAT LINK, IT WILL SCAM YOU!
Explanation:
Answer:
???????,???????????????????????????????