The entire range of anything is called its spectrum.
For em wavelengths, it's the electromagnetic spectrum.
Answer: 16.22 m/s^2
Explanation: g= GM/r^2 G= (6.67x 10^-11) M= 1.66(6x 10^24) r=(6400x 10^3) so
((6.67x10^-11)(1.66x 6x 10^24))/ (6400x10^3)^2 = 16.22 m/s^2
Hey,
i am here to help you................
The house needs sound absorbing materials in the walls so that reveberation dosen't happens and can here clearly what people will be saying in the house
It is also used in cinema halls also
I believe that this answer was heplful.
Answer:
R = 35.27 Ohms
Explanation:
Given the following data;
Voltage = 230V
Power = 1500W
To find the resistance, R;
Power = V²/R
Where:
V is the voltage measured in volts.
R is the resistance measured in ohms.
Substituting into the equation, we have;
1500 = 230²/R
Cross-multiplying, we have;
1500R = 52900
R = 52900/1500
R = 35.27 Ohms.
Therefore, the resistance which the heating element needs to have is 35.27 Ohms.
Answer:
The answer is below
Explanation:
The amplitude decreases by 2% during each oscillation. Hence the decrease in amplitude can be represented by an exponential decay in the form:
y = abˣ; where x ad y are variables, a is the initial value and b is the factor.
Let y represent the amplitude after x oscillations. Since the initial amplitude is 10 cm, hence:
a = 10 cm, b = 2% = 0.02.
Therefore:
y = 10(0.02)ˣ
The amplitude after 25 oscillations is gotten by substituting x = 25 into the equation. Hence:
y = 10(0.02)²⁵
y= 3.355 * 10⁻⁴² cm
The amplitude after 25 oscillations is 3.355 * 10⁻⁴² cm