In the writing of ionic chemical formulas the value of each ion's charge is crossed over in the crossover rule.
Rules for naming Ionic compounds
- Frist Rule
The cation (element with a negative charge) is written first in the name then the anion(element with a positive charge) is written second in the name.
- Second rule
When the formula unit contains two or more of the same polyatomic ion, that ion is written in parentheses with the subscript written outside the parentheses.
Example: Sodium carbonate is written as Na₂CO₃ not Na₂(CO)₃
- Third rule
If the cation is a metal ion with a fixed charge then the name of the cation will remain the same as the (neutral) element from which it is derived (Example: Na+ will be sodium).
If the cation is a metal ion with a variable charge, the charge on the cation is indicated using a Roman numeral, in parentheses, immediately following the name of the cation (example: Fe³⁺ = iron(III)).
- Fourth rule
If the anion is a monatomic ion, the anion is named by adding the suffix <em>-ide</em> to the root of the element name (example: F = Fluoride).
The oxidation state of each ion is also important, thus in the crossover rule, the value of each ion's charge is crossed over.
Learn more about chemical formulas here:
<u>brainly.com/question/11995171</u>
#SPJ4
The resonant frequency of a circuit is the frequency
at which the equivalent impedance of a circuit is purely real (the imaginary part is null).
Mathematically this frequency is described as

Where
L = Inductance
C = Capacitance
Our values are given as


Replacing we have,



From this relationship we can also appreciate that the resonance frequency infers the maximum related transfer in the system and that therefore given an input a maximum output is obtained.
For this particular case, the smaller the capacitance and inductance values, the higher the frequency obtained is likely to be.
Answer: C (impulse acting on the object)
The momentum is defined as it is the impulse acting on the force . Change in momentum is known as Impulse. Impulse is used to increase or decrease the momentum of object.
From Newtons II law
F = m. a
= m. v/t <em>since a = rate of change of velocity.</em>
<em> </em>F . t = m . v
F . t is known as impulse momentum
]A force called the effort force is applied at one point on the lever in order to move an object, known as the resistance force, located at some other point on the lever.
The way levers work is by multiplying the effort exerted by the user. Specifically, to lift and balance an object, the effort force the user applies multiplied by its distance to the fulcrum must equal the load force multiplied by its distance to the fulcrum. Consequently, the greater the distance between the effort force and the fulcrum, the heavier a load can be lifted with the same effort force.