The equation 4(x − 7) − 128 = 9x − 5(x + 6) has no solution
<h3><u>Solution:</u></h3>
Given that 4(x − 7) − 128 = 9x − 5(x + 6)
We have to find the solution for this equation
4(x − 7) − 128 = 9x − 5(x + 6)
Let us use BODMAS rule to perform the sequence of operations
According to Bodmas rule, if an expression contains brackets ((), {}, []) we have to first solve or simplify the bracket followed by of (powers and roots etc.), then division, multiplication, addition and subtraction from left to right.
So let us solve for brackets first
4x - 28 - 128 = 9x - 5x - 30
Now let us perform subtraction
4x - 156 = 4x - 30
Now move the terms from R.H.S to L.H.S
4x - 4x = -30 + 156

Since there is no value of x that will ever make this a true statement, the solution to the equation above is “no solution”
So this equation has no solution
Answer:
1296√3 cubic units
Step-by-step explanation:
The volume of the prism will be the product of its base area and its height. Since it circumscribes a sphere with diameter 12, that is the height of the prism.
The central cross section of the sphere is a circle of radius 6, and that will be the size of the incircle of the base. That is, the base will have an altitude of 3 times that incircle radius, and an edge length of 2√3 times that incircle radius. Hence the area of the triangular base is ...
B = (1/2)(6×2√3)(6×3) = 108√3 . . . . . square units
The volume of the prism is then ...
V = Bh = (108√3)(12) = 1296√3 . . . cubic units
_____
<em>Comment on the geometry</em>
The centroid of an equilateral triangle is also the incenter and the circumcenter. The distance of that center from any edge of the triangle is 1/3 the height of the triangle. So, for an inradius of 6, the triangle height is 3×6 = 18. The side length of an equilateral triangle is 2/√3 times the altitude, so is 12√3 units for this triangle.
Step-by-step explanation:
angles on a straight line
Answer:
20+56 or basically 76
Step-by-step explanation:
Just multiply -8 to -2.5 and -7.