<u>Answer:</u> The limiting reagent in the reaction is bromine.
<u>Explanation:</u>
Limiting reagent is defined as the reagent which is completely consumed in the reaction and limits the formation of the product.
Excess reagent is defined as the reagent which is left behind after the completion of the reaction.
Given values:
Moles of iron = 10.0 moles
Moles of bromine = 12.0 moles
The chemical equation for the reaction of iron and bromine follows:

By the stoichiometry of the reaction:
If 3 moles of bromine reacts with 2 moles of iron
So, 12.0 moles of bromine will react with =
of iron
As the given amount of iron is more than the required amount. Thus, it is present in excess and is considered as an excess reagent.
Hence, bromine is considered a limiting reagent because it limits the formation of the product.
Thus, the limiting reagent in the reaction is bromine.
Answer:
the molecular mass of hydrogen sulphide, which contains two atoms of hydrogen and one atom of sulphur is = 2 — 1 + 1 — 32 = 34 a.m.u.
Answer:
-125 kJ
Explanation:
You calculate the energy required to break all the bonds in the reactants. Then you subtract the energy to break all the bonds in the products.
H₂C=CH₂ + H₂ ⟶ H₃C-CH₃
Bonds: 4C-H + 1C=C 1H-H 6C-H + 1C-C
D/kJ·mol⁻¹: 413 612 436 413 347
The formula relating ΔHrxn and bond dissociation energies (D) is
ΔHrxn = Σ(Dreactants) – Σ(Dproducts)
(Note: This is an exception to the rule. All other thermochemical reactions are “products – reactants”. With bond energies, it’s “reactants – products”. The reason comes from the way we define bond energies.)
<em>For the reactant</em>s:
Σ(Dreactants) = 4 × 413 + 1 × 612 + 1 × 436 = 2700 kJ
<em>For the products:</em>
Σ(Dproducts) = 6 × 413 + 1 × 347 = 2825 kJ
<em>For the system</em>
:
ΔHrxn = 2700 - 2825 = -125 kJ
Answer
thus, 4 moles of oxygen gas (O2) would have a mass of 128 g.
Answer: Th enthalpy of combustion for the given reaction is 594.244 kJ/mol
Explanation: Enthalpy of combustion is defined as the decomposition of a substance in the presence of oxygen gas.
W are given a chemical reaction:



To calculate the enthalpy change, we use the formula:

This is the amount of energy released when 0.1326 grams of sample was burned.
So, energy released when 1 gram of sample was burned is = 
Energy 1 mole of magnesium is being combusted, so to calculate the energy released when 1 mole of magnesium ( that is 24 g/mol of magnesium) is being combusted will be:
