Answer:
d) additional heat alters the vicosity and the surface tension of the liquid which raises the vapor pressure and increases the boiling point which is why you must continually heat the solution
Answer:
1) When 69.9 g heptane is burned it releases 5.6 mol water.
2) C₇H₁₆ + 11O₂ → 7CO₂ + 8H₂O.
Explanation:
- Firstly, we should balance the equation of heptane combustion.
- The balanced equation is: <em>C₇H₁₆ + 11O₂ → 7CO₂ + 8H₂O.</em>
This means that every 1.0 mole of complete combustion of heptane will release 8 moles of H₂O.
- We need to calculate the no. of moles in 69.9 g of heptane that is burned using the relation: <em>n = mass/molar mass.</em>
n of 69.9 g of heptane = mass/molar mass = (69.9 g)/(100.21 g/mol) = 0.697 mol ≅ 0.7 mol.
<em><u>Using cross multiplication:</u></em>
1.0 mol of heptane releases → 8 moles of water.
0.7 mol of heptane releases → ??? moles of water.
<em>∴ The no. of moles of water that will be released from burning (69.9 g) of water</em> = (0.7 mol)(8.0 mol)/(1.0 mol) = <em>5.6 mol.</em>
<em>∴ When 69.9 g heptane is burned it releases </em><em>5.6</em><em> mol water. </em>
<em />
Answer:
6.05 g
Explanation:
Molarity of a substance , is the number of moles present in a liter of solution .
M = n / V
M = molarity
V = volume of solution in liter ,
n = moles of solute ,
From the question ,
M = 200mM
Since,
1 mM = 10⁻³ M
M = 200 * 10⁻³ M
V = 250 mL
Since,
1 mL = 10⁻³ L
V = 250 * 10⁻³ L
The moles can be calculated , by using the above relation,
M = n / V
Putting the respective values ,
200 * 10⁻³ M = n / 250 * 10⁻³ L
n = 0.05 mol
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
m = 121 g/mol
n = 0.05 mol ( calculated above )
The mass of tri base can be calculated by using the above equation ,
n = w / m
Putting the respective values ,
0.05 mol = w / 121 g/mol
w = 0.05 mol * 121 g/mol
w = 6.05 g
I just know it’s not conductive or brittle