The number of moles of NH3 that could be made would be 0.5 moles
<h3>Stoichiometric reactions</h3>
From the balanced equation of the reaction:
N2 (g) + 3 H2(g) ----> 2NH3 (g)
The mole ratio of N2 to H2 is 1:3
Thus, for 0.50 moles of N2, 1.5 moles of H2 should be present. But 0.75 moles of H2 was allowed to react. Meaning that H2 is limiting in this case.
Mole ratio of H2 and NH3 = 3:2
Thus for 0.75 moles H2, the mole of NH3 that would be produced will be:
2 x 0.75/3 = 0.5 moles
More on stoichiometric calculations can be found here: brainly.com/question/8062886
The percentage error is the error of the measured value to the true value. To find he percent error, the equation is as follows:
Percent error = |Measured Value - True Value|/True Value * 100
The || is needed to get the absolute value of the difference. Substituting the values,
Percent error = |(10.085 g/10 mL) - 0.9975 g/mL|/<span>0.9975 g/mL * 100
</span><em>Percent error = 1.1% </em>
Answer:
d
Explanation:
Generally, it is transported through pipes so I think statement d is incorrect.
Answer:
ΔH₁₂ = -867.2 Kj
Explanation:
Find enthalpy for 3H₂ + O₃ => 3H₂O given ...
2H₂ + O₂ => 2H₂O ΔH₁ = -483.6 Kj
3O₂ => 2O₃ ΔH₂ = + 284.6 Kj
_____________________________
3(2H₂ + O₂ => 2H₂O) => 6H₂ + 3O₂ => 6H₂O (multiply by 3 to cancel O₂)
6H₂ + 3O₂ => 6H₂O ΔH₁ = 3(-483.6 Kj) = -1450.6Kj
2O₃ => 3O₂ ΔH₂ = -284.6Kj (reverse rxn to cancel O₂)
_______________________________
6H₂ + 2O₃ => 6H₂O ΔH₁₂ = -1735.2 Kj (Net Reaction - not reduced)
________________________________
divide by 2 => target equation (Net Reaction - reduced)
3H₂ + O₃ => 3H₂O ΔH₁₂ = (-1735.2/2) Kj = -867.2 Kj
Answer:
Kb = 

Explanation:
For a weak organic base, the formula to find
is given by:

where c is the concentration of base.
Here c= 

Substituting the above values in the formula,we get:

Hence:
Kb = 
