Answer : Option D) Covalent bond.
Explanation : The bond formed when electrons are shared is called a covalent bond.
A covalent bond which is also called as molecular bond, is a chemical bond which involves mainly the sharing of electron pairs between atoms. These electron pairs are called as shared pairs or bonding pairs, which are stable balance of attractive and repulsive forces between atoms, when these bonding pairs share electrons, it is called as covalent bonding.
Covalent bonding is usually seen in non-metals which share their electrons while bonding.
Answer:
Mass = 547.02 × 10⁻²³g
Explanation:
Given data:
Number of atoms of Al = 122 atom
Mass in gram = ?
Solution:
Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
122 atom/6.022 × 10²³ atoms × 1 mol
20.26× 10⁻²³ mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 20.26× 10⁻²³ mol × 27 g/mol
Mass = 547.02 × 10⁻²³g
You would want to know everything just Incase anything happens because maybe you get lost
The solubility product of a substance us calculated by the product of the concentration of the dissociated ions in the solution raise to the stoichiometric coefficient of the ions. Therefore, we need the dissociation reaction. For this, it will have the reaction:
PbI2 = Pb^2+ + 2I-
We solve as follows:
Ksp = [Pb2+][I-]^2 = <span>1.4 x 10-8
</span><span>1.4 x 10-8 = x(2x)^2
</span><span>1.4 x 10-8 = 4x^3
x = 1.5x10^-3 M
The molar solubility would be </span>1.5x10^-3 M.
Answer : The
for this reaction is, -88780 J/mole.
Solution :
The balanced cell reaction will be,

Here, magnesium (Cu) undergoes oxidation by loss of electrons, thus act as anode. silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
The half oxidation-reduction reaction will be :
Oxidation : 
Reduction : 
Now we have to calculate the Gibbs free energy.
Formula used :

where,
= Gibbs free energy = ?
n = number of electrons to balance the reaction = 2
F = Faraday constant = 96500 C/mole
= standard e.m.f of cell = 0.46 V
Now put all the given values in this formula, we get the Gibbs free energy.

Therefore, the
for this reaction is, -88780 J/mole.