A graph depicting a direct relation is a straight line and usually has positive slope. An inverse relation is a curve, typically concave up with negative slope.
Answer:
Explanation:
Partial pressure of oil = mole fraction of oil x total pressure
mole fraction of oil = mole of oil / mole of water + mole of oil
= mole of oil = mass of oil / molecular weight of oil
= 20 / 100 = .2
mole of water = 80 / 18
= 4.444
mole fraction of oil = .2 / .2 + 4.444
= .2 / 4.644
Partial pressure of oil = mole fraction of oil x total pressure
= (.2 / 4.644 ) x 760 mm
= 32.73 mm Hg .
Answer:
0.38
Explanation:
Molar mass of thiophene= 84g/mol
Mass of thiophene = 37g
Number of moles= 37/84= 0.44 moles
Molar mass of heptane= 100 g/mol
Mass of heptane = 72g
Number of moles = 72/100= 0.72 moles
Total number of moles= 0.44 + 0.72= 1.16 moles
mole fraction of thiophene = 0.44/1.16= 0.38
Answer;
56 kg of water
Solution;
Weight = 62 kg of water in 93 kg of a person
W=km
62=93k;
k=2/3
W=(2/3)84
=56 kg
Therefore; a 84-kg person will have 56 kg of water.
Answer : The mass of sulfuric acid needed is
.
Solution : Given,
pH = 8.94
Volume of solution = 380 ml =

Molar mass of sulfuric acid = 98.079 g/mole
As we know,

![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
![5.06=-log[OH^-]](https://tex.z-dn.net/?f=5.06%3D-log%5BOH%5E-%5D)
![[OH^-]=0.00000871=8.71\times 10^{-6}mole/L](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.00000871%3D8.71%5Ctimes%2010%5E%7B-6%7Dmole%2FL)
Now we have to calculate the moles of
.
Formula used : 
![\text{ Moles of }[OH^-]=\text{ Concentration of }[OH^-]\times Volume\\\text{ Moles of }[OH^-]=(8.71\times 10^{-6}mole/L)\times (380\times 10^{-3}L)=3309.8\times 10^{-9}moles](https://tex.z-dn.net/?f=%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%5Ctext%7B%20Concentration%20of%20%7D%5BOH%5E-%5D%5Ctimes%20Volume%5C%5C%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%288.71%5Ctimes%2010%5E%7B-6%7Dmole%2FL%29%5Ctimes%20%28380%5Ctimes%2010%5E%7B-3%7DL%29%3D3309.8%5Ctimes%2010%5E%7B-9%7Dmoles)
For neutralization, equal number of moles of
ions will neutralize same number of
ions.
![\text{ Moles of }[OH^-]=\text{ Moles of }[H^+]=3309.8\times 10^{-9}moles](https://tex.z-dn.net/?f=%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%5Ctext%7B%20Moles%20of%20%7D%5BH%5E%2B%5D%3D3309.8%5Ctimes%2010%5E%7B-9%7Dmoles)
As, 
From this reaction, we conclude that
2 moles of
ion is given by the 1 mole of 
moles of
ion is given by
moles of 
Now we have to calculate the mass of sulfuric acid.
Mass of sulfuric acid = Moles of
× Molar mass of sulfuric acid
Mass of sulfuric acid = 
Therefore, the mass of sulfuric acid needed is
.