Answer:
m<N = 76°
Step-by-step explanation:
Given:
∆JKL and ∆MNL are isosceles ∆ (isosceles ∆ has 2 equal sides).
m<J = 64° (given)
Required:
m<N
SOLUTION:
m<K = m<J (base angles of an isosceles ∆ are equal)
m<K = 64° (Substitution)
m<K + m<J + m<JLK = 180° (sum of ∆)
64° + 64° + m<JLK = 180° (substitution)
128° + m<JLK = 180°
subtract 128 from each side
m<JLK = 180° - 128°
m<JLK = 52°
In isosceles ∆MNL, m<MLN and <M are base angles of the ∆. Therefore, they are of equal measure.
Thus:
m<MLN = m<JKL (vertical angles are congruent)
m<MLN = 52°
m<M = m<MLN (base angles of isosceles ∆MNL)
m<M = 52° (substitution)
m<N + m<M° + m<MLN = 180° (Sum of ∆)
m<N + 52° + 52° = 180° (Substitution)
m<N + 104° = 180°
subtract 104 from each side
m<N = 180° - 104°
m<N = 76°
Answer:

Step-by-step explanation:
Hi there!

Open up the parentheses

Combine like terms

I hope this helps!
Answer: Option A -439
(s o t)(x)=s(t(x))
(s o t)(-7)=s(t(-7))
x=-7→t(-7)=3(-7)→t(-7)=-21
(s o t)(-7)=s(t(-7))=s(-21)
x=-21→s(-21)=2-(-21)^2=2-441→s(-21)=-439
(s o t)(-7)=s(t(-7))=s(-21)=-439
Answer: Option A -439
Answer:

Step-by-step explanation: