When the child is moving, he/she has kinetic energy. For just a brief second before they move the other way, the child is not moving, but they have gravitational potential energy.
The child may need a push from time to time because friction with the air causes loss of energy.
We will use the ideal gas equation:
PV = nRT, where n is moles and equal to mass / Mr
P = mRT/MrV
P = 15.4 x 8.314 x (22.55 + 273) / 32 x 4.44
P = 266.3 kPa
Answer:
this may be wrong but I am not sure
Answer:
The force is 86.5×10^9 N towards the negative charge (to the right)
Explanation:
The electrostatic force on the charges is given by Coulomb's law;
F= Kq1q2/r^2
This an inverse square law.
F= electrostatic force on the charges
K= constant of Coulomb's law
q1 and q2= magnitude of the charges
Since K= 9.0×10^9Nm^2C^2
F= 9.0×10^9 × 5 × 3/(1.25)^2 = 135×10^9/1.56
F= 86.5×10^9 N
The force is 86.5×10^9 N towards the negative charge.