+14-17+16-28 = -17+16-14 = -1-14=-15 ... west, and out of breath
For #5 It's helpful to draw a free body diagram so you know which way the forces are acting on the block.
the weight mg is acting downwards, and you need to find the vertical and horizontal components of mg using sin and cosine. so do 15x9.8xsin40 which is the force. Assuming no friction, this is the only force acting on the block, as the forces on the vertical plane cancel out i.e the normal force and weight of the block.
after, just do F=ma And since you know F and m, solve for a.
Answer:
Given:
mass of the ball m = 0.144 kg
velocity v = 38 m/s
now, change in momentum
P = m v- ( - mv)
= 2 mv
=2 x (0.144) x (38)
= 10.944 kg-m/s
Impulse J= F. Δt
change in momentum is equal to impulse
J = 10.944 kg-m/s
we know force is equal to change in momentum per unit time


F = 13.68 x 10³ N
F = 13.68 kN
Answer:
Explanation:
If Ig be moment of inertia about an axis through centre of mass and I be moment of inertia through any other axis parallel to earlier axis , then according to theory of parallel axis ,
I = Ig + Md²
where M is mass of the body and d is distance between two parallel axis.
So I is greater than Ig.
A metric unit of volume is centermetres or metres, cubed e.g.
Cm3