Answer:
7.1 m/s
Explanation:
First, find the time it takes for the fish to reach the water.
Given in the y direction:
Δy = 6.1 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
6.1 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.12 s
Next, find the velocity needed to travel 7.9 m in that time.
Given in the x direction:
Δx = 7.9 m
a = 0 m/s²
t = 1.12 s
Find: v₀
Δx = v₀ t + ½ at²
7.9 m = v₀ (1.12 s) + ½ (0 m/s²) (1.12 s)²
v₀ = 7.1 m/s
Hello,
The answer is to "prove your hypothesis".
Reason:
Researchers do experiments to prove there hypothesis they will most likely do the experiment a few times in older to have the conclusion valid therefore proving his or her experiment.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit
Answer:
The peak-to-peak ripple voltage = 2V
Explanation:
120V and 60 Hz is the input of an unfiltered full-wave rectifier
Peak value of output voltage = 15V
load connected = 1.0kV
dc output voltage = 14V
dc value of the output voltage of capacitor-input filter
where
V(dc value of output voltage) represent V₀
V(peak value of output voltage) represent V₁
V₀ = 1 - (
)V₁
make C the subject of formula
V₀/V₁ = 1 - (1 / 2fRC)
1 / 2fRC = 1 - (v₀/V₁)
C = 2fR ((1 - (v₀/V₁))⁻¹
Substitute for,
f = 240Hz , R = 1.0Ω, V₀ = 14V , V₁ = 15V
C = 2 * 240 * 1 (( 1 - (14/15))⁻¹
C = 62.2μf
The peak-to-peak ripple voltage
= (1 / fRC)V₁
= 1 / ( (120 * 1 * 62.2) )15V
= 2V
The peak-to-peak ripple voltage = 2V
Chameleon's tongue is more fast than thought. Its long sticky tongue moves at an amazing ballistic speed which lashes out unsuspecting insects and bugs. Now let us see how fast it is.
GIven:
acceleration of the chameleon's tongue- 260 m/s
2 for 20 ms
constant speed 30 ms
50 ms total time
1/20 of a second
solution:
<u>260</u> = <u> n</u><u> </u>
20 50
<u>20 n </u>= <u>13, 000</u>
20 20
n= 650 m/s