Solid at room temperature
Answer:
a) Not Accurate
b) Not Accurate
c) Accurate
d) Accurate
Explanation:
Part a
Not Accurate, because destructive interference would lead to maximum possible magnitude of < 3 m
Part b
Not Accurate, because constructive interference would lead to minimum possible magnitude of > 2 m
Part c
Accurate, because destructive interference would lead to maximum possible magnitude of < 3 m by varying the phase difference between two waves she can achieve the desired results.
Part d
Accurate, because constructive interference would lead to minimum possible magnitude of > 2 m by varying the phase difference between two waves she can achieve the desired results.
The weight of the box is <em>w</em> = <em>mg</em>, where <em>m</em> is the mass. So
<em>m</em> = <em>w</em>/<em>g</em> = (3893.40 N) / (9.80 m/s²) ≈ 397 kg
Then the box has density
(397 kg)/(4.60 m³) ≈ 86.4 kg/m³
which is less than the density of the given liquid, so the box will float.
If the length and linear density are constant, the frequency is directly proportional to the square root of the tension.