Test questions measure recall; matching concepts with their definitions measures recognition.
<u>Explanation:
</u>
According to Psychology our brain remembers everything what we learn but the understanding and remembering the right answer for the right question needs training and understanding ability. So in order to enhance the ability of recalling and recognizing among the students, the concept of test questions and matching with definitions are used in curricular activities.
As the students will be learning different terms, definitions, methods and different subjects, they should be able to distinguish among different definitions as well as they should recall the things they have learnt. So the answers for the test questions will help to recall the topics learnt by the students while the matching concept will help the students to recognize each definition with their terms.
Answer:
Explanation:
As it’s difficult to catch it from up.
Gravitational force will pull us when we jump.
If gravity was not there, he could catch the ball. But he will float in the sky after that.
That’s the answer
Answer:
a) D_ total = 18.54 m, b) v = 6.55 m / s
Explanation:
In this exercise we must find the displacement of the player.
a) Let's start with the initial displacement, d = 8 m at a 45º angle, use trigonometry to find the components
sin 45 = y₁ / d
cos 45 = x₁ / d
y₁ = d sin 45
x₁ = d sin 45
y₁ = 8 sin 45 = 5,657 m
x₁ = 8 cos 45 = 5,657 m
The second offset is d₂ = 12m at 90 of the 50 yard
y₂ = 12 m
x₂ = 0
total displacement
y_total = y₁ + y₂
y_total = 5,657 + 12
y_total = 17,657 m
x_total = x₁ + x₂
x_total = 5,657 + 0
x_total = 5,657 m
D_total = 17.657 i^+ 5.657 j^ m
D_total = Ra (17.657 2 + 5.657 2)
D_ total = 18.54 m
b) the average speed is requested, which is the offset carried out in the time used
v = Δx /Δt
the distance traveled using the pythagorean theorem is
r = √ (d1² + d2²)
r = √ (8² + 12²)
r = 14.42 m
The time used for this shredding is
t = t1 + t2
t = 1 + 1.2
t = 2.2 s
let's calculate the average speed
v = 14.42 / 2.2
v = 6.55 m / s