The second, fourth, and seventh answers apply. Energy in a closed system is conserved, but it can change form
(A) 19.2 W
<u>Explanation:</u>
Given-
Voltage drop, V = 24 V
Resistor = 30Ω
Current, I = 0.8 A
Power, P = ?
We know,
P = VI
P = 24 (0.8)
P = 19.2 W
Therefore, the power conducted by the resistor is 19.2 W
Answer:
Coil 2 have 235 loops
Explanation:
Given
The number of loops in coil 1 is n
₁=
159
The emf induced in coil 1 is ε
₁
=
2.78
V
The emf induced in coil 2 is ε
₂
=
4.11
V
Let
n
₂ is the number of loops in coil 2.
Given, the emf in a single loop in two coils are same. That is,
ϕ
₁/n
₁=
ϕ
₂
n
₂⟹
2.78/159
=
4.11/
n
₂
n₂=
n₂=235
Therefore, the coil 2 has n
₂=
235 loops.
Answer:
a) v₃ = 19.54 km, b) 70.2º north-west
Explanation:
This is a vector exercise, the best way to solve it is finding the components of each vector and doing the addition
vector 1 moves 26 km northeast
let's use trigonometry to find its components
cos 45 = x₁ / V₁
sin 45 = y₁ / V₁
x₁ = v₁ cos 45
y₁ = v₁ sin 45
x₁ = 26 cos 45
y₁ = 26 sin 45
x₁ = 18.38 km
y₁ = 18.38 km
Vector 2 moves 45 km north
y₂ = 45 km
Unknown 3 vector
x3 =?
y3 =?
Vector Resulting 70 km north of the starting point
R_y = 70 km
we make the sum on each axis
X axis
Rₓ = x₁ + x₃
x₃ = Rₓ -x₁
x₃ = 0 - 18.38
x₃ = -18.38 km
Y Axis
R_y = y₁ + y₂ + y₃
y₃ = R_y - y₁ -y₂
y₃ = 70 -18.38 - 45
y₃ = 6.62 km
the vector of the third leg of the journey is
v₃ = (-18.38 i ^ +6.62 j^ ) km
let's use the Pythagorean theorem to find the length
v₃ = √ (18.38² + 6.62²)
v₃ = 19.54 km
to find the angle let's use trigonometry
tan θ = y₃ / x₃
θ = tan⁻¹ (y₃ / x₃)
θ = tan⁻¹ (6.62 / (- 18.38))
θ = -19.8º
with respect to the x axis, if we measure this angle from the positive side of the x axis it is
θ’= 180 -19.8
θ’= 160.19º
I mean the address is
θ’’ = 90-19.8
θ = 70.2º
70.2º north-west