Answer: the most potential energy == 5 kg book, 2 m from the ground= 98 Joules
Explanation:
potential energy = m g h
m = mass
g = acceleration due gravity = 9.8 m/s²
h = distance above ground
1. Pe₁ = 1 kg x 2 m x g = 2 g
2. Pe₂ = 5 kg x 2 m x g = 10 g = 10 kg m x 9,8 m/s² = 98 Joules
3. Pe₃ = 1 kg x 0,5 m x g = 0,5 g
4. Pe₄ = 5 kg x 0.5 m x g = 2,5 g
10 > 2,5 > 2 >0,5
The experimenting stage, since the scientist would need to record his or her data on a chart
Answer:
f1 = -3.50 m
Explanation:
For a nearsighted person an object at infinity must be made to appear to be at his far point which is 3.50 m away. The image of an object at infinity must be formed on the same side of the lens as the object.
∴ v = -3.5 m
Using mirror formula,
i/f1 = 1/v + 1/u
Where f1 = focal length of the contact lens, v = image distance = -3.5 m, u = object distance = at infinity(∞) = 1/0
∴ 1/f1 = (1/-3.5) + 1/infinity
Note that, 1/infinity = 1/(1/0) = 0/1 =0.
∴ 1/f1 = 1/(-3.5) + 0
1/f1 = 1/(-3.5)
Solving the equation by finding the inverse of both side of the equation.
∴ f1 = -3.50 m
Therefore a converging lens of focal length f1 = -3.50 m
would be needed by the person to see an object at infinity clearly
Gravitational potential energy=mass of object x gravitational field strength on earth(9.8 usually rounded to 10) x the height the object is held at
Therefore if two objects were held at the same height, the object with more mass(the heavier object) will fall faster because it's gravitational potential energy is greater than that of the lighter object
V=L•W•H. Sub in what you know: 375=10•5•H. Simplify: 375=50H. Divide by 50: 375/50=H. H=7.5 :)