Answer:
the 6 om is brighter because 6-3=3
Explanation:
Explanation:
Since I can only do this by observation, the elevation of F is approximately 850km and the elevation of B is 925km.
The answer would be letter choice B
Answer:
Frictional force, F = 45.9 N
Explanation:
It is given that,
Weight of the box, W = 150 N
Acceleration, 
The coefficient of static friction between the box and the wagon's surface is 0.6 and the coefficient of kinetic friction is 0.4.
It is mentioned that the box does not move relative to the wagon. The force of friction is equal to the applied force. Let a is the acceleration. So,



Frictional force is given by :


F = 45.9 N
So, the friction force on this box is closest to 45.9 N. Hence, this is the required solution.
Explanation:
There's not enough information in the problem to solve it. We need to know either the initial speed of the lorry, or the time it takes to stop.
For example, if we assume the initial speed of the lorry is 25 m/s, then we can find the rate of deceleration:
v² = v₀² + 2aΔx
(0 m/s)² = (25 m/s)² + 2a (50 m)
a = -6.25 m/s²
We can then use Newton's second law to find the force:
F = ma
F = (7520 kg) (-6.25 m/s²)
F = -47000 N