That formula would be HNO2
<h3>Answer:</h3>
18.75 grams
<h3>Explanation:</h3>
- Half-life refers to the time taken by a radioactive material to decay by half of the original mass.
- In this case, the half-life of element X is 10 years, which means it takes 10 years for a given mass of the element to decay by half of its original mass.
- To calculate the amount that remained after decay we use;
Remaining mass = Original mass × (1/2)^n, where n is the number of half-lives
Number of half-lives = Time for the decay ÷ Half-life
= 40 years ÷ 10 years
= 4
Therefore;
Remaining mass = 300 g × (1/2)⁴
= 300 g × 1/16
= 18.75 g
Hence, a mass of 300 g of an element X decays to 18.75 g after 40 years.
This isn't a good question but I guess!
<span>iron gets hotter before copper.</span>
Answer:
See the answer below
Explanation:
The best approach would be to <u>pour the liquid from the large reagent bottle into a small-size beaker or reagent bottle first</u>, before measuring the required quantity out into the reaction vessel. This is necessary in order to maintain safety in the laboratory.
Pouring the liquid directly from the large reagent bottle into the measuring cylinder or directly into the reaction bottle can compromise safety in the laboratory. The liquid might splash out and cause harm to the handler or create other harmful circumstances in the laboratory.