Question #1
Potasium hydroxide (known)
volume used is 25 ml
Molarity (concentration) = 0.150 M
Moles of KOH used
0.150 × 25/1000 = 0.00375 moles
Sulfuric acid (H2SO4)
volume used = 15.0 ml
unknown concentration
The equation for the reaction is
2KOH (aq)+ H2SO4(aq) = K2SO4(aq) + 2H2O(l)
Thus, the Mole ratio of KOH to H2SO4 is 2:1
Therefore, moles of H2SO4 used will be;
0.00375 × 1/2 = 0.001875 moles
Acid (sulfuric acid) concentration
0.001875 moles × 1000/15
= 0.125 M
Question #2
Hydrogen bromide (acid)
Volume used = 30 ml
Concentration is 0.250 M
Moles of HBr used;
0.25 × 30/1000
= 0.0075 moles
Sodium Hydroxide (base)
Volume used 20 ml
Concentration (unknown)
The equation for the reaction is
NaOH + HBr = NaBr + H2O
The mole ratio of NaOH : HBr is 1 : 1
Therefore, moles of NaOH used;
= 0.0075 moles
NaOH concentration will be
= 0.0075 moles × 1000/20
= 0.375 M
Rarely they can't with just sight. Certain tests or experiments should take place
Glucose is the simplest sugar and carbohydrate that provides energy. The simplified model of glucose (C₆H₁₂O₆) shows carbon, hydrogen, and oxygen atoms linked together.
<h3>What is glucose?</h3>
Glucose is an example of a carbohydrate macromolecule that is further classified as a monosaccharide. They are crystalline and fundamental units of carbohydrates.
The molecular formula of glucose is C₆H₁₂O₆ and the mass is 180.156 g/mol. It is an aldohexose that contains an aldehydic functional group. In its structure, there are six oxygen atoms, six carbon atoms, and twelve hydrogen atoms.
Therefore, the glucose molecule is composed of C, H, and O.
Learn more about glucose here:
brainly.com/question/2396657
#SPJ1
Electrons have less mass than a neutron.