The molecules of a liquid substance are closely packed together to each other. So as a result, liquids are denser than gases.
<h3>
What is the difference between the density of liquid and gas?</h3>
A mass of gas will have a much larger volume compared to the same mass of liquid. This is because it has a much lower density. The density of gaseous oxygen is 0.0014 g/cm3. Density is ρ=Mass Volume. We know that gas will uniformly occupy more space than liquid whatever volume is available to it. On the other hand, solids and liquids, are closely packed as compared to gas and are high-density materials where ρ is relatively constant.
So we can conclude that the molecules of a liquid substance are closely packed together with each other. So as a result, liquids are denser than gases.
Learn more about Density: brainly.com/question/1354972
#SPJ1
A measure of thermal energy transferred between two different bodies at different temperatures would be the correct answer. So, the third option.
Answer: Moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
Explanation:
Given: Mass of methane = 146.6 g
As moles is the mass of a substance divided by its molar mass. So, moles of methane (molar mass = 16.04 g/mol) are calculated as follows.

The given reaction equation is as follows.

This shows that 2 moles of hydrogen gives 1 mole of methane. Hence, moles of hydrogen required to form 9.14 moles of methane is as follows.

Thus, we can conclude that moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
Answer:
a) Limiting: sulfur. Excess: aluminium.
b) 1.56g Al₂S₃.
c) 0.72g Al
Explanation:
Hello,
In this case, the initial mass of both aluminium and sulfur are missing, therefore, one could assume they are 1.00 g for each one. Thus, by considering the undergoing chemical reaction turns out:

a) Thus, considering the assumed mass (which could be changed based on the one you are given), the limiting reagent is identified as shown below:

Thereby, since there 1.00g of aluminium will consume 0.0554 mol of sulfur but there are just 0.0156 mol available, the limiting reagent is sulfur and the excess reagent is aluminium.
b) By stoichiometry, the produced grams of aluminium sulfide are:

c) The leftover is computed as follows:

NOTE: Remember I assumed the quantities, they could change based on those you are given, so the results might be different, but the procedure is quite the same.
Best regards.