Answer:
t_{out} =
t_{in}, t_{out} = 
Explanation:
This in a relative velocity exercise in one dimension,
let's start with the swimmer going downstream
its speed is

The subscripts are s for the swimmer, r for the river and g for the Earth
with the velocity constant we can use the relations of uniform motion
= D / 
D = v_{sg1} t_{out}
now let's analyze when the swimmer turns around and returns to the starting point

= D / 
D = v_{sg 2} t_{in}
with the distance is the same we can equalize

t_{out} = t_{in}
t_{out} =
t_{in}
This must be the answer since the return time is known. If you want to delete this time
t_{in}= D / 
we substitute
t_{out} = \frac{v_s - v_r}{v_s+v_r} ()
t_{out} = 
China because it is cheaper then getting it from Pittsburgh
Answer:
P= 15A x 120 V P= 1800 W
I believe, I hope this helps
Explanation:
Explanation:
It is given that,
The Displacement x of particle moving in one dimension under the action of constant force is related to the time by equation as:

Where,
x is in meters and t is in sec
We know that,
Velocity,

(a) i. t = 2 s

At t = 4 s

(b) Acceleration,

Pu t = 3 s in above equation
So,

Hence, (a) (i) v = 55 m/s (ii) v = 211 m/s and (b) 78 m/s²
Longitudinal waves....
sounds propagates through moving waves of compression and ratification of a medium which allows longitudinal propagation