Answer:
(a) Radius of orbit will be 
(b) Earth gravitational force will be 
(C) Height will be 
Explanation:
We have given
Mass of the earth, 
Mass of the satellite, m = 5600 kg
Radius of earth, 
Time period T = 6200 sec
We know that 
Now
(a) We know that 


Radius of the orbit 
(b)
Force 
(c)
Altitude 
Answer:
The ball will be attracted to the negatively charged plate. It'll touch and pick up some electrons from the plate so that the ball becomes negatively charged. Immediately the ball is repelled by the negative plate and is attracted to the positive plate. The ball gives up electrons to the positive plate so that it is positively charged and suddenly attracts to the negative plate again, flies over to it and picks up enough electrons to be repulsed by negative plate and again to the positive plate and that continues.
Answer:
Resultant = 13km
Direction = 67.38° East of North
Explanation:
Given the following :
5km North ; 12km East
Resultant Displacement (r) :
r² = 5² + 12²
r² = 25 + 144
r² = 169
r = √169
r = 13
Direction:
Tangent = opposite / Adjacent
Tanθ = opposite / Adjacent
Opposite = 12 ; adjacent = 5
Tanθ = (12/5)
Tanθ = 2.4
θ = tan^-1(2.4)
θ = 67.38° east of north
To solve this problem it is necessary to take into account the concepts related to the magnetic moment and the torque applied over magnetic moments.
For the case of the magnetic moment of a loop we have to,

Where
I = Current
A = Area of the loop
Moreover the torque exerted by the magnetic field is defined as,

Where,
I = Current
A = Area of the loop
B = Magnetic Field
PART A) First we need to find the perimeter, then




The total Area of the loop would be given as,



Substituting at the equation of magnetic moment we have


Therefore the magnetic moment of the loop is 
PART B) Replacing our values at the equation of torque we have that



Therefore the torque exerted by the magnetic field is 
Answer:
3 is the GCF for all these numbers if thats what you're asking