As per Newton's III law we can say that
Force applied by object 1 on object 2 is always equal in magnitude and opposite in direction of the force that object 2 apply on object 1.
So we can say it as

now here above question is based upon the same
if a bag of vegetables applied a force F = 22.5 N of the surface stand the the same surface will apply same magnitude of force in opposite direction on the vegetables bag
So our answer will be F = 22.5 N (upwards).
Answer:
C) 50 m/s
Explanation:
With the given information we can calculate the acceleration using the force and mass of the box.
Newton's 2nd Law: F = ma
- 5 N = 1 kg * a
- a = 5 m/s²
List out known variables:
- v₀ = 0 m/s
- a = 5 m/s²
- v = ?
- Δx = 250 m
Looking at the constant acceleration kinematic equations, we see that this one contains all four variables:
Substitute known values into the equation and solve for v.
- v² = (0)² + 2(5)(250)
- v² = 2500
- v = 50 m/s
The final velocity of the box is C) 50 m/s.
Answer:
The work done on the suitcase is, W = 600 J
Explanation:
Given,
The average force exerted by Jose on his suitcase, F = 60 N
Jose carried the suitcase to a distance, S = 10 m
The work done on the suitcase is given by the relation
<em>W = F x S</em>
Substituting the given values in the above equation,
W = 60 N x 10 m
= 600 J
Hence, the work done on the suitcase is, W = 600 J
Answer:

& 
Explanation:
Given:
- interior temperature of box,

- height of the walls of box,

- thickness of each layer of bi-layered plywood,

- thermal conductivity of plywood,

- thickness of sandwiched Styrofoam,

- thermal conductivity of Styrofoam,

- exterior temperature,

<u>From the Fourier's law of conduction:</u>

....................................(1)
<u>Now calculating the equivalent thermal resistance for conductivity using electrical analogy:</u>




.....................(2)
Putting the value from (2) into (1):


is the heat per unit area of the wall.
The heat flux remains constant because the area is constant.
<u>For plywood-Styrofoam interface from inside:</u>



&<u>For Styrofoam-plywood interface from inside:</u>



Answer:
F = M a where M is acceleration and a is acceleration
a = x / s^2 = distance / time squared
The Newton is derived because mass, distance, and time are all fundamental units One would have to look at the fundamental requirements for these definitions, but they can all be repeated in a laboratory.
So the Newton is determined from these fundamental units and since the Joule equals Newton * Distance it is also derived from the fundamental units.
If one has the three fundamental units then one can derive the Joule and Newton.