Kinetic energy is energy in motion and potential energy is stored energy
The velocity is the integral of acceleration. If acceleration is 100 m/s^2 then velocity is:

So to know the velocity at any time, t, we just put t in seconds into this equation. To know at what time we get to a certain velocity, we set this equation equal to that velocity and solve for t:
(a) +9.30 kg m/s
The impulse exerted on an object is equal to its change in momentum:

where
m is the mass of the object
is the change in velocity of the object, with
v = final velocity
u = initial velocity
For the volleyball in this problem:
m = 0.272 kg
u = -12.6 m/s
v = +21.6 m/s
So the impulse is

(b) 155 N
The impulse can also be rewritten as

where
F is the force exerted on the volleyball (which is equal and opposite to the force exerted by the volleyball on the fist of the player, according to Newton's third law)
is the duration of the collision
In this situation, we have

So we can re-arrange the equation to find the magnitude of the average force:

Answer:
mass =25 kg
using clockwise moment = anticlockwise moment