Answer:
carbon dioxide and water
Explanation:
Example: Combustion of Methane (CH₄(g))
CH₄(g) + 2O₂(g) => CO₂(g) + 2H₂O(g)**
____________________
Note: The combustion of any hydrocarbon produces CO₂ & H₂O. That is,
Ethane (C₂H₆) + O₂ => CO₂(g) + H₂O(g)
Propane (C₃H₈) + O₂ => CO₂(g) + H₂O(g)
Butane (C₄H₁₀) + O₂ => CO₂(g) + H₂O(g)
The issue remaining is to balance the reaction equation. For these type equation balance Carbon 1st, then Hydrogen and finish with Oxygen. Balancing in this order leaves Oxygen which can be balanced using fractions. If problem requires lowest whole number ratios of elements, simply multiply entire equation by 2 to get standard equation*
______________________
*Standard Equation is defined as the smallest whole number ratios of elements. The 'standard equation' is significant in that it is assumed to be at STP conditions; i.e., 0⁰C (=273K) & 1.0 Atmosphere pressure.
- Ethane (C₂H₆) + 7/2O₂(g) => 2CO₂(g) + 3H₂O(g)
=> 2C₂H₆ + 7O₂(g) => 4CO₂(g) + 6H₂O(g) <= Standard Form of Rxn
- Propane (C₃H₈) + 5O₂(g) => 3CO₂(g) + 4H₂O(g) <= Standard Form of Rxn (no need to balance with the '2' multiple)
- Butane (C₄H₁₀) + 13/2O₂ => 4CO₂(g) + 5H₂O(g)
=> 2C₃H₈ + 13O₂(g) => 4CO₂(g) + 5H₂O(g) <= Standard Form of Rxn
______________________
**Also, note that water, H₂O(g), is listed as a gas. In some cases it will be listed as a liquid, H₂O(l).
There are two types of fluid in the body extracellular fluid and intracellular fluid (ECF and ICF), together they are account for total body water.
The Sodium (Na+) ion is at higher concentration in the extracellular fluid than in the intracellular fluid. The function of extracellular fluid is that it provide cells to watery environment so that they can easily live and perform their function.
Photosynthesis is the process where plants create energy. It requires water, carbon dioxide and sunlight. The end result is glucose, which the plants consume, and oxygen. Cellular respiration requires oxygen and glucose. The end result is carbon dioxide, ATP, and water.
Answer:
When the coefficients in a balanced chemical reaction are multiplied by two, the equilibrium constant is not affected.
Explanation:
The equilibrium constant of a reaction is known to remain steady.
Even if all the coefficients of all the species in the reaction are multiplied by two, the value of the equilibrium constant will reamin the same because the equilibrium position will not change as a result of that.