1.95 or 2 is the molarity of a 45.3g sample of KNO3 (101g) dissolved in enough water to make a 0.225L solution.
The correct answer is option b
Explanation:
Data given:
mass of KN
= 45.3 grams
volume = 0.225 litre
molarity =?
atomic mass of KNO3 = 101 grams/mole
molarity is calculated by using the formula:
molarity = 
first the number of moles present in the given mass is calculated as:
number of moles = 
number of moles = 
0.44 moles of KNO3
Putting the values in the equation of molarity:
molarity = 
molarity = 1.95
It can be taken as 2.
The molarity of the potassium nitrate solution is 2.
Mass = moles x molar mass
so mass of 6 moles of h2 is: 6×1×2 = 12g
Metals are on the left side of the table and nonmetals are on the left with metalloids between them. And the noble gases are all in group 18 of the periodic table.
They become more stable because they achieve a full outer shell of valence electrons with the magic number of 8.
Any substance that accept a proton by definition is considered to be BRONSTED LOWRY BASE.
Bronsted Lowry defined acid and base on the basis of donating or accepting protons. In the Bronsted Lowry classification of acid and base, an acid is defined as a substance which donate proton while a base is defined as a substance which accept proton.