<u>Answer:</u> The value of
for the net reaction is 
<u>Explanation:</u>
The given chemical equations follows:
<u>Equation 1:</u> 
<u>Equation 2:</u> 
The net equation follows:
As, the net reaction is the result of the addition of first equation and the second equation. So, the equilibrium constant for the net reaction will be the multiplication of first equilibrium constant and the second equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:


Putting values in above equation, we get:

Hence, the value of
for the net reaction is 
Two. O and E are both vowels
Answer:
The bombarding particle is a Proton
Explanation:
A Nuclear transmutation reaction occurs when radioactive element decay, usually converting them from one element/isotope into another element. Transmutation is the process which causes decay, generally, alpha or beta.
¹⁶₈O(P,alpha) ¹³₇N, can be written as
¹⁶₈O + x goes to ¹³₇N + ⁴₂He
Where x can be anything, balancing the equation in order to give us the correct amount of proton number and nucleus number
16 + x = 13 + 4
x = 17 – 16 = 1, Hence we can say that x = ¹₁P
<u>¹⁶₈O + ¹₁P goes to ¹³₇N + ⁴₂He</u>
Here we can clearly see the bombarding particle is ¹₁P (proton). The ejected particle being ⁴₂He which is also known as an alpha particle
Its described as a Straight Branch, hope this helps :)
Well as an spontaneous reaction will have a negative gibbs free energy (delta g) and a positive e cell and also the E cell is also measured in V, then your answer is the first one: ΔG = –295kJ, E°cell = +1.53 v. Hope this works