Answer:
1+2 = 12
Explanation:
this is a math equation, not a chemical formula
Answer:
Repeated SN2 reactions occur leading to the formation of a racemic mixture
Explanation:
S-2-iodooctane is a chiral alkyl halide with an asymmetric carbon atom. The presence of an asymmetric carbon atom implies that it can rotate plane polarized light and thus lead to optical isomerism. The two configurations of the compound are R/S according to the Cahn-Prelong-Ingold system.
However, when S-2-iodooctane is treated with sodium iodide in acetone, repeated SN2 reactions occur since the iodide ion is both a good nucleophile and a good leaving group. Hence a racemic modification is formed in the system with time hence we end up with (±)- Iodooctane.
Answer:
The volume of the gas is 2.80 L.
Explanation:
An ideal gas is a theoretical gas that is considered to be made up of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
The Pressure (P) of a gas on the walls of the container that contains it, the Volume (V) it occupies, the Temperature (T) at which it is located and the amount of substance it contains (number of moles, n) are related from the equation known as Equation of State of Ideal Gases:
P*V = n*R*T
where R is the constant of ideal gases.
In this case:
- P= 2 atm
- V= ?
- n=0.223 moles
- R= 0.0821

- T=33 °C= 306 °K (being O°C= 273°K)
Replacing:
2 atm* V= 0.223 moles*0.0821
* 306 K
Solving:

V= 2.80 L
<u><em>The volume of the gas is 2.80 L.</em></u>
An Exothermic reaction releases energy into the surroundings and so the products have more potential energy then the reactants. The enthalpy change is a negative value. Whereas, an endothermic reaction involves the absorption of energy into the system and so the reactants have more potential energy than the products. The enthalpy change is a positive value. This is clearly represented in energy profile diagrams.
No, the formation of dew is condensation, which is a physical change.