a) When the reaction takes place a yellow precipitate will be formed.
b) The law of conservation of mass is true.
<u>Explanation:</u>
a) When a lead nitrate solution is mixed with a potassium chromate solution, a yellow precipitate containing lead forms according to the equation:
→ 
b) Law of conservation of mass for the given reaction is true.
From the given table we know the mass of reactants and its products.
Law of conservation of mass is a principle when a reaction takes place in a closed system, the mass of the products and reactants in the system doesn't change.
⇒The sum of the mass of the reactants = The sum of the mass of the products.
The sum of the reactants = 128.71+128.97.
= 257.68 g.
The sum of the products = 154.10+103.58.
= 257.68 g.
Thus law of conservation of mass is true for the above reaction.
Answer:
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C
Explanation:
<u>Step 1: </u>Data given
mass of water = 300 grams
initial temperature = 10°C
final temperature = 50°C
Temperature rise = 50 °C - 10 °C = 40 °C
Specific heat capacity of water = 4.184 J/g °C
<u>Step 2:</u> Calculate the heat
Q = m*c*ΔT
Q = 300 grams * 4.184 J/g °C * (50°C - 10 °C)
Q = 50208 Joule = 50.2 kJ
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C
ITS B. FASHO that’s what I’m think
Osmosis and diffusion are related processes that display similarities. Both osmosis and diffusion equalize the concentration of two solutions. Both diffusion and osmosis are passive transport processes, which means they do not require any input of extra energy to occur. In both diffusion and osmosis, particles move from an area of higher concentration to one of lower concentration. Osmosis and facilitated diffusion both account for movement of molecules from a region of high concentration to a region of low concentration.
Answer:-
atoms.
Solution:- We have been given the grams of carbon tetrachloride and asked to calculate the number of atoms of chlorine. It is a three step conversion problem. In the first we convert the grams of carbon tetrachloride to moles of it. In second step we convert moles of carbon tetrachloride to moles of chlorine and in the third step we convert the moles of chlorine to atoms of chlorine.
For grams to mole conversion we need the molar mass of the compound. Molar mass of carbon tetrachloride is 153.82 grams per mol. If we look at the formula of carbon tetrachloride then four chlorine are present in it. It means 1 mol of carbon tetrachloride has four moles of chlorine. The calculations are as follows:

=
atoms
So, there are
atoms in 12.2 grams of
.