Explanation:
Christmas tree production occurs worldwide on Christmas tree farms, in artificial tree factories and from native strands of pine and fir trees. Christmas trees, pine and fir trees purposely grown for use as a Christmas tree, are grown on plantations in many western nations, including Australia, the United Kingdom and the United States. In Australia, the industry is relatively new, and nations such as the United States, Germany and Canada are among world leaders in annual production.
Great Britain consumes about 8 million trees annually, while in the United States between 35 and 40 million trees are sold during the Christmas season. Artificial Christmas trees are mostly produced in the Pearl River delta area of China. Christmas tree prices were described using a Hotelling-Faustmann model in 2001, the study showed that Christmas tree prices declined with age and demonstrated why more farmers do not price their trees by the foot. In 1993, economists made the first known demand elasticity estimates for the natural Christmas tree market.
Answer:
(a) 43.2 kC
(b) 0.012V kWh
(c) 0.108V cents
Explanation:
<u>Given:</u>
- i = current flow = 3 A
- t = time interval for which the current flow =

- V = terminal voltage of the battery
- R = rate of energy = 9 cents/kWh
<u>Assume:</u>
- Q = charge transported as a result of charging
- E = energy expended
- C = cost of charging
Part (a):
We know that the charge flow rate is the electric current flow through a wire.

Hence, 43.2 kC of charge is transported as a result of charging.
Part (b):
We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:

Hence, 0.012V kWh is expended in charging the battery.
Part (c):
We know that the energy cost is equal to the product of energy expended and the rate of energy.

Hence, 0.108V cents is the charging cost of the battery.
Answer:
<h2>2.2 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>2.2 m/s²</h3>
Hope this helps you