1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Roman55 [17]
3 years ago
13

How do lenses and mirrors compare in their interactions with light?

Physics
2 answers:
slamgirl [31]3 years ago
7 0
D. lenses focus light , mirrors do not
Alisiya [41]3 years ago
4 0

Answer:

C. lenses refract light; mirrors do not

You might be interested in
An object moving in a constant velocity will always have a
jeka94

Answer:

constant velocity unless acted on my an opposite force

7 0
3 years ago
Why might an electromagnet be used to pick up old cars in junk yards?
s344n2d4d5 [400]
I think the correct answer would be that because electromagnets are powerful and can be turned off and on anytime. Electromagnet is a magnet in which the magnetic field is made by the electric current that is induced to the system.
5 0
3 years ago
Read 2 more answers
What is your angular position 75 seconds after the wheel starts turning, measured counterclockwise from the top? Express your an
AveGali [126]

Complete Question

A Ferris wheel on a California pier is 27 m high and rotates once every 32 seconds in the counterclockwise direction. When the wheel starts turning, you are at the very top.

What is your angular position 75 seconds after the wheel starts turning, measured counterclockwise from the top? Express your answer as an angle between 0∘ and 360∘. Express your answer in degrees.

Answer:

\phi=123.75

Explanation:

From the question we are told that:

Height h=27m

Period T=32sec

Time t=75sec

Generally the equation for angular velocity is mathematically given by

\omega=\frac{2 \pi}{T}

\omega=\frac{2 \pi}{32}

\omega=0.196rad/s

Therefore

\theta=\omega t

\theta=0.196rad/s*75sec

\theta=843.75 \textdegree

Therefore

\phi=\theta-2(360)

\phi=123.75

6 0
3 years ago
a) What is the average useful power output of a person who does6.00×10^6Jof useful work in 8.00 h? (b) Working at this rate, how
NARA [144]

Answer:

208.33 W

141.26626 seconds

Explanation:

E = Energy = 6\times 10^6\ J

t = Time taken = 8 h

m = Mass = 2000 kg

g = Acceleration due to gravity = 9.81 m/s²

h = Height of platform = 1.5 m

Power is obtained when we divide energy by time

P=\frac{E}{t}\\\Rightarrow P=\frac{6\times 10^6}{8\times 60\times 60}\\\Rightarrow P=208.33\ W

The average useful power output of the person is 208.33 W

The energy in the next part would be the potential energy

The time taken would be

t=\frac{E}{P}\\\Rightarrow t=\frac{mgh}{208.33}\\\Rightarrow t=\frac{2000\times 9.81\times 1.5}{208.33}\\\Rightarrow t=141.26626\ s

The time taken to lift the load is 141.26626 seconds

5 0
3 years ago
An object is 10 cm from thé mirror, its height is 1 cm and thé focal length is 5 cm. What is thé distance from thé mirror? S1= _
Viefleur [7K]
Note: I assume the mirror is concave, so that its focal length is positive (it is not specified in the text)

1a) We can use the mirror equation to find the distance of the image from the mirror:
\frac{1}{f}= \frac{1}{p}+ \frac{1}{q}
where 
f=5 cm is the focal length
p=10 cm is the distance of the object from the mirror
q is the distance of the image from the mirror.

Rearranging the equation, we find
\frac{1}{q}= \frac{1}{f}- \frac{1}{p}= \frac{1}{5}- \frac{1}{10}= \frac{1}{10 cm}
so, the distance of the image from the mirror is q=10 cm.

1b) The image height is given by the magnification equation:
\frac{h_i}{h_o}=- \frac{p}{q}
where h_i is the heigth of the image and h_o=1 cm is the height of the object. By rearranging the equation and using p and q, we find
h_i=-h_o  \frac{p}{q}=-(1 cm) \frac{10 cm}{10 cm}=-1 cm
and the negative sign means the image is inverted.

2) As before, we can find the distance of the image from the mirror by using the mirror equation:
\frac{1}{f}= \frac{1}{p}+ \frac{1}{q}
Rearranging it, we find
\frac{1}{q}= \frac{1}{f}- \frac{1}{p}= \frac{1}{2}- \frac{1}{10}= \frac{4}{10 cm}
so, the distance of the image from the mirror is
q= \frac{10}{4}cm= 2.5 cm

3) As before, we find the distance of the image from the mirror by using the mirror equation:
\frac{1}{f}= \frac{1}{p}+ \frac{1}{q}
Rearranging it, we find
\frac{1}{q}= \frac{1}{f}- \frac{1}{p}= \frac{1}{2}- \frac{1}{10}= \frac{4}{10 cm}
so, the distance of the image from the mirror is
q= \frac{10}{4}cm= 2.5 cm

And now we can use the magnification equation to find the image height:
\frac{h_i}{h_o}=- \frac{p}{q}
Rearranging it, we find
h_i=-h_o \frac{p}{q}=-(3cm) \frac{10 cm}{2.5 cm}=-12 cm
and the negative sign means the image is inverted.
5 0
3 years ago
Other questions:
  • A 9­v battery is connected to a light bulb with a resistance of 3?. what is the current in the circuit
    12·1 answer
  • Permeability is the condition of being capable of having materials flow into and out of a membrane. The permeability of a cell m
    6·2 answers
  • I really don't understand any of this because my teacher does not help us
    15·1 answer
  • The eagle drops the trout a height of 6.1 m the fish travels 7.9 m horizontaly before hitting the water what is the velocity of
    6·1 answer
  • A device that does work with one movement and changes the size or direction of a force is a(n)
    14·2 answers
  • Which of the following is an example of mechanical waves in nature?
    8·1 answer
  • A student locates a double-slit assembly 1.40 m from a reflective screen. The slits are separated by 0.0572 mm. (a) Suppose the
    15·1 answer
  • A charge of 70 A ·h (ampere-hours) moves through a poten- difference of 25 V. What are (a) the charge in coulombs and(b) the mag
    14·1 answer
  • Which planet is small, with a rocky surface and an atmosphere?
    12·2 answers
  • Explain the term diffraction​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!