<span>a) M is the big one
m is the little one
v is the speed of each of them when they impact
V = speed of mii after collision
Conservation of momentum
Mv – mv = mV
Conservation of energy
1/2Mv^2 + 1/2mv^2 = 1/2 mV^2
This pair simplify to give
M = 3m
V = 2v
So m = 0.21kg
and h = 4 . 2.7 = 10.8 m</span>Source(s):<span>Old teacher</span>
Answer:
a. The magnitude of the tension in the string is greater than the magnitude of the weight of the rock.
Explanation:
During the motion of the rock while it is in downward motion we can say

since it is performing circular motion so we will have its acceleration towards its center



So at the lowest point of the path we can say

so correct answer is
a. The magnitude of the tension in the string is greater than the magnitude of the weight of the rock.
(a) 2NO(g) + O₂(g) ⇄2NO₂(g)kp
(b) 2N₂O(g)⇄2NO(g) + N₂(g) kp
(c) N₂(g) + O₂(g)⇄ 2NO(g) kp
Now A is
2NO +O₂⇄2NO₂
ΔG° =ΔG° products - ΔG reactants
=2× 51.3-(256.6)
-70.6kJ/mol.
ΔG° = -RT Inkp
-70.6 = -8.314 ×10⁻³ ˣ 298.15 ˣInkJ
InkJ = 28.48
kp=2.34 ˣ 10¹²
B is
ΔG° = 2× 86.6 - 2 × 104.2 = -35.2
-35.2 = 8.314 × 10⁻³ ˣ 298.15 ˣInkJ
InkJ = 14.2
kp = 1.47ˣ 10⁶
C is
It is also similar
kp = 4.62 ˣ 10⁻³I
The element chlorine has 17 electrons, 17 protons and 18 neutrons....<span> In an atom there is an equal number of electrons and protons. The number of neutrons is found by subtracting the atomic number from the mass number ...
Hope it helps !!!</span>
Answer:
7 orbitals are allowed in a sub shell if the angular momentum quantum number for electrons in that sub shell is 3.
Explanation:
We that different values of m for a given l provide the total number of ways in which a given s, p,d and f sub shells in presence of magnetic field can be arranged in space along x, y ,z- axis or total number of orbitals into which a given subshell can be divided.
Range for given l lies between -l to +l .
The possible values of m are -3 , -2 , -1 , 0 , 1 ,2 , 3 .
Total number of orbitals are 7.