Answer:
The total amount of energy that would have been released if the asteroid hit earth = The kinetic energy of the asteroid = 1.29 × 10¹⁵ J = 1.29 PetaJoules = 1.29 PJ
1 PJ = 10¹⁵ J
Explanation:
Kinetic energy = mv²/2
velocity of the asteroid is given as 7.8 km/s = 7800 m/s
To obtain the mass, we get it from the specific gravity and diameter information given.
Density = specific gravity × 1000 = 3 × 1000 = 3000 kg/m³
But density = mass/volume
So, mass = density × volume.
Taking the informed assumption that the asteroid is a sphere,
Volume = 4πr³/3
Diameter = 30 m, r = D/2 = 15 m
Volume = 4π(15)³/3 = 14137.2 m³
Mass of the asteroid = density × volume = 3000 × 14137.2 = 42411501 kg = 4.24 × 10⁷ kg
Kinetic energy of the asteroid = mv²/2 = (4.24 × 10⁷)(7800²)/2 = 1.29 × 10¹⁵ J
I = E / R
If the resistors are in series, the current is 0.3 Amperes.
If the resistors are in parallel, the current is 1.25 Amperes.
An isotonic solution is <span>a solution in which concentration or solute is equal to that of a cell placed in it. Thus, the system is in dynamic equilibrium, and so water molecules flow in both directions.
The correct answer is <u>C. w</u></span><span><u>ater molecules flow in both directions at the same rate.</u></span>
Add 35 to 215. then divide by 25. you should get x=10