<h3>1)</h3>
No,kinetic energy cannot be negative since its given by KE=mv²,mass cannot be negative and the square of speed cannot b negative.
<h3>2)</h3>
Yes,any force opposing motion or displacement does negative work. They are often referred to as resistive forces (friction,air resistance,drag...)
<h3>3)</h3>
Nope it does not, it just forces the object to move in a circular path known as a centripetal force. It can accelerate an object by changing it's direction but not it's speed.
<h3>4)</h3>
No it cannot,If an object is sliding on the table (assuming it is not an incline), then most probably that normal force cancels out the weights effect or assuming there is an incline, it cancels the weight's y component.
<h3>5)</h3>

The work done is zero
<h3>6)</h3>

The work is just the product of the magnitude of the force exerted and the displacement of the object.
<h3>7)</h3>

<h3>Work is decreasing but positive</h3>
<h3>8)</h3>

<h3>Work is zero</h3>
<h3>9)</h3>

<h3>Work is negative</h3>
Here (X) is a parallel combination of resistors whereas it is series combination of resistors in (Y).
Hope this is the answer you're looking for. If it is correct then mark my answer as the brainliest! :)
It's easier for you to solve these than to try and read my solutions if I solve them.
Use this magic formula:
(period) · (frequency) = 1
If you handle the magic formula carefully and correctly, you can get these facts out of it:
-- Period = 1 / frequency
-- Frequency = 1 / period
Use the first one to solve #1.
Use the second one to solve #2.
Answer:
Explanation:
A particular solution for the 1D wave equation has the form

where A its the amplitude, k the wavenumber, ω the angular frequency and φ the phase angle.
Now, for any given position
, we can use:

so, the equation its:
.
This is the equation for a simple harmonic oscillation!
So, for any given point, we can use a simple harmonic oscillation as visual model. Now, when we move a
distance from the original position, we got:

and

now, this its



So, there its a phase angle difference of
. We can model this simply by starting the simple harmonic oscillation with a different phase angle.
Answer:
(a) 10 s
(b) 236.5 m
(c) Kathy's speed = 47.3 m/s
Stan's speed = 42.9 m/s
Explanation:
<u>Given:</u>
= initial speed of Kathy = 0 m/s
= initial speed of Stan = 0 m/s
= acceleration of Kathy = 
= acceleration of Stan = 
<u>Assumptions:</u>
= final speed of Kathy when see catches Stan
= final speed of Stan when Kathy catches him
= distance traveled by Kathy to catch Stan
= distance traveled by Stan when Kathy catches him
= time taken by Kathy to catch Stan = 
= time interval in which Kathy catches Stan = 
Part (a):
Kathy will catch Stan only if the distances traveled by each of them are equal at the same instant.

Hence, Kathy catches Stan after 11 s from the Stan's starting times.
Part (b):
Distance traveled by Kathy to catch Stan will be distance the distance traveled by her in 10 s.

Hence, Kathy traveled a distance of 236.5 m to overtake Stan.
Part (c):

The speed of Kathy at the instant she catches Stan is 47.3 m/s.

The speed of Stan at the instant Kathy catches him is 42.9 m/s.