The final volume of the gas is 238.9 mL
Explanation:
We can solve this problem by using Charle's law, which states that for a gas kept at constant pressure, the volume of the gas (V) is proportional to its absolute temperature (T):

Which can be also re-written as

where
are the initial and final volumes of the gas
are the initial and final temperature of the gas
For the gas in the balloon in this problem, we have:
is the initial volume
is the initial absolute temperature
is the final volume
is the final temperature
Solving for
,

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Answer:
0.16 m
Explanation:
A rectangular gasoline tank can hold 50.0 kg of gasoline when full, and the density of gasoline is 6.8 × 10² kg/m³. We can find the volume occupied by the gasoline (volume of the tank).
50.0 kg × (1 m³/6.8 × 10² kg) = 0.074 m³
The volume of the rectangular tank is:
volume = width × length × depth
depth = volume / width × length
depth = 0.074 m³ / 0.500 m × 0.900 m
depth = 0.16 m
Answer:
m = 0.51[kg]
Explanation:
Potential energy is defined as the product of mass by gravity by height.

where:
Epot = potential energy = 15 [J]
m = mass [kg]
g = gravity acceleration = 9.8 [m/s²]
h = elevation = 3 [m]
Now replacing:
![E_{pot}=m*g*h\\15=m*9.8*3\\m = 0.51[kg]](https://tex.z-dn.net/?f=E_%7Bpot%7D%3Dm%2Ag%2Ah%5C%5C15%3Dm%2A9.8%2A3%5C%5Cm%20%3D%200.51%5Bkg%5D)
Energy is transferred in a wave
Energy is transferred, but mass is not.