In the equation given above, there is conservation of MASS, CHARGE AND ENERGY.
These three parameters are usually conserved during the course of chemical reactions. When any of these parameter experience a reduction during the course of chemical reaction, such loss is always gained by other elements involved in the same reaction, so that at the end of the day, they are not considered as lost.
1. “what forms of energy conversions occur during the process of photosynthesis? (How does energy transform?)
2. What is missing from the food web but is essential to maintain equilibrium?
A. Soil
B.water
C. Decomposers
D. Oxygen
Answer:
As a result, electrolyte solutions readily conduct electricity. ... By contrast, if a compound dissociates to a small extent, the solution will be a weak conductor of electricity; ... Typically, nonelectrolytes are primarily held together by covalent rather than ionic bonds. ... Explain why some molecules do not dissolve in water.
Answer:
0.052mL
Explanation:
1mole of a gas occupy 22.4L.
Therefore, 1 mole of CO2 will also occupy 22.4L.
If 1mole of CO2 occupies 22.4L,
Then 2.3moles of CO2 will occupy = 2.3 x 22.4 = 51.52L
coverting this volume to mL, we simply divide by 1000 as shown below:
51.52/1000 = 0.05152mL = 0.052mL
Answer:All matter can move from one state to another. It may require extreme temperatures or extreme pressures, but it can be done. Sometimes a substance doesn't want to change states. You have to use all of your tricks when that happens. To create a solid, you might have to decrease the temperature by a huge amount and then add pressure. For example, oxygen (O2) will solidify at -361.8 degrees Fahrenheit (-218.8 degrees Celsius) at standard pressure. However, it will freeze at warmer temperatures when the pressure is increased.
Some of you know about liquid nitrogen (N2). It is nitrogen from the atmosphere in a liquid form and it has to be super cold to stay a liquid. What if you wanted to turn it into a solid but couldn't make it cold enough to solidify? You could increase the pressure in a sealed chamber. Eventually you would reach a point where the liquid became a solid. If you have liquid water (H2O) at room temperature and you wanted water vapor (gas), you could use a combination of high temperatures or low pressures to solve your problem.
Points of Change
Phase Changes: Pressure and temperature define the state of matter for water.Phase changes happen when you reach certain special points. Sometimes a liquid wants to become a solid. Scientists use something called a freezing point or melting point to measure the temperature at which a liquid turns into a solid. There are physical effects that can change the melting point. Pressure is one of those effects. When the pressure surrounding a substance increases, the freezing point and other special points also go up. It is easier to keep things solid when they are under greater pressure.
Generally, solids are more dense than liquids because their molecules are closer together. The freezing process compacts the molecules into a smaller space.
There are always exceptions in science. Water is special on many levels. It has more space between its molecules when it is frozen. The molecules organize in a specific arrangement that takes up more space than when they are all loosey-goosey in the liquid state. Because the same number of molecules take up more space, solid water is less dense than liquid water. There are many other types of molecular organizations in solid water than we can talk about here.
CHEMISTRY TERM PHASE CHANGE
Fusion/Melting
Freezing
Vaporization/Boiling
Condensation
Sublimation
Deposition
Solid to a Liquid
Liquid to a Solid
Liquid to a Gas
Gas to a Liquid
Solid to a Gas
Gas to a Solid
Explanation: