Considering the reaction stoichiometry and Avogadro's Number, the mass of barium chloride produced is 21.6 grams.
<h2>Balanced reaction</h2>
The balanced reaction is
2 HCl + Ba → BaCl₂ + H₂
<h2>Moles of HCl that react</h2>
Avogadro's Number is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023×10²³ particles per mole. Avogadro's number applies to any substance.
Then you can apply the following rule of three: if 6.023×10²³ molecules are contained in 1 mole of HCl, then 1.25×10²³ molecules are contained in how many moles of HCl?
amount of moles of HCl= (1.25×10²³ molecules × 1 mole)÷ 6.023×10²³ atoms
<u><em>amount of moles of HCl= 0.2075 moles</em></u>
Then, 0.2075 moles of HCl react.
<h2>Reaction stoichiometry</h2>
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
HCl: 2 moles
Ba: 1 mole
BaCl₂: 1 mole
H₂: 1 mole
<h2>Mass of barium chloride produced</h2>
Then you can apply the following rule of three: if by stoichiometry 2 moles of HCl produce 1 mole of BaCl₂, 0.2075 moles of HCl will produce how many moles of BaCl₂?
<u><em>amount of moles of BaCl₂= 0.10375 moles</em></u>
Being the molar mass of BaCl₂ 208.24 g/mole, then the mass of barium chloride produced is calculated as:
Finally, the mass of barium chloride produced is 21.6 grams.