1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Georgia [21]
3 years ago
15

A child is standing on the platform of a station, watching the trains.

Physics
2 answers:
zaharov [31]3 years ago
6 0
C. 90 m

30m per second... and it takes 3 seconds

3x30= 90
tigry1 [53]3 years ago
3 0
C 90 m
30 times 3 equals 90
You might be interested in
An object is pulled with two forces, 10 N northward and 15 N southward. The direction of the net force is to the An object is pu
ValentinkaMS [17]

Answer:

check image

Explanation:

For any question related to newons law of motion first draw the free body diagram(FBD),

7 0
3 years ago
PLZ HELP photosynthesis transforms (blank)into chemical (blank)suger . cellular respration releasses the (blank) from food by (b
Alex17521 [72]

Answer is:

Photosynthesis transforms light energy into chemical energy. Cellular respration releasses the carbon dioxide from food into the air.

hope this helps :)

5 0
3 years ago
A 5.6 g marble is fired vertically upward using a spring gun. The spring must be compressed 6.4 cm if the marble is to just reac
N76 [4]

Answer: im not gonna give i to you just do 15+15=_+ 5.6+6.4 easy

Explanation: i took the test and got a 100%

5 0
2 years ago
A drag car starts from rest and moves down the racetrack with an acceleration defined by a = 50 - 10r, where a and fare in m/s^2
xz_007 [3.2K]

Answer:

Mistake in question

The correct question

A drag car starts from rest and moves down the racetrack with an acceleration defined by a = 50 - 10t , where a and t are in m/s² and seconds, respectively. After reaching a speed of 125 m/s, a parachute is deployed to help slow down the dragster. Knowing that this deceleration is defined by the relationship a = - 0.02v², where v is the velocity in m/s, determine (a) the total time from the beginning of the race until the car slows back down to 10 m/s, (b) the total distance the car travels during this time.

Explanation:

Given the function

a = 50 —10t

The car started from rest u = 0

And it accelerates to a speed of 125m/s

Then, let find the time in this stage

Acceleration can be modeled by

a = dv/dt

Then, dv/dt = 50—10t

Using variable separation to solve the differentiation equation

dv = (50—10t)dt

Integrating both sides

∫ dv = ∫ (50—10t)dt

Note, v ranges from 0 to 125seconds, so we want to know the time when it accelerate to 125m/s. So t ranges from 0 to t'

∫ dv = ∫ (50—10t)dt

v = 50t —10t²/2. Equation 1

[v] 0<v<125 = 50t —10t²/2 0<t<t'

125—0 = 50t — 5t² 0<t<t'

125 = 50t' — 5t'²

Divide through by 5

25 = 10t' — t'²

t'² —10t' + 25 = 0

Solving the quadratic equation

t'² —5t' —5t' + 25 = 0

t'(t' —5) —5(t' + 5) = 0

(t' —5)(t' —5) = 0

Then, (t' —5) = 0 twice

Then, t' = 5 seconds twice

So, the car spent 5 seconds to get to 125m/s.

The second stage when the parachute was deployed

We want to the time parachute reduce the speed from 125m/s to 10m/s,

So the range of the velocity is 125m/s to 10m/s. And time ranges from 0 to t''

The function of deceleration is give as

a = - 0.02v²

We know that, a = dv/dt

Then, dv/dt = - 0.02v²

Using variable separation

(1/0.02v²) dv = - dt

(50/v²) dv = - dt

50v^-2 dv = - dt

Integrate Both sides

∫ 50v^-2 dv = -∫dt

(50v^-2+1) / (-2+1)= -t

50v^-1 / -1 = -t

- 50v^-1 = -t

- 50/v = - t

Divide both sides by -1

50/v = t. Equation 2

Then, v ranges from 125 to 10 and t ranges from 0 to t''

[ 50/10 - 50/125 ] = t''

5 - 0.4 = t''

t'' = 4.6 seconds

Then, the time taken to decelerate from 125s to 10s is 4.6 seconds.

So the total time is

t = t' + t''

t = 5 + 4.6

t = 9.6 seconds

b. Total distanctraveleded.

First case again,

We want to find the distance travelled from t=0 to t = 5seconds

a = 50—10t

We already got v, check equation 1

v = 50t —10t²/2 + C

v = 50t — 5t² + C

We add a constant because it is not a definite integral

Now, at t= 0 v=0

So, 0 = 0 - 0 + C

Then, C=0

So, v = 50t — 5t²

Also, we know that v=dx/dt

Therefore, dx/dt = 50t — 5t²

Using variable separation

dx = (50t —5t²)dt

Integrate both sides.

∫dx = ∫(50t —5t²)dt

x = 50t²/2 — 5 t³/3 from t=0 to t=5

x' = [25t² — 5t³/3 ]. 0<t<5

x' = 25×5² — 5×5³/3 —0

x' = 625 — 208.333

x' = 416.667m

Stage 2

The distance moved from

t=0 to t =4.6seconds

a = -0.002v²

We already derived v(t) from the function above, check equation 2

50/v = t + C.

When, t = 0 v = 125

50/125 = 0 + C

0.4 = C

Then, the function becomes

50/v = t + 0.4

50v^-1 = t + 0.4

Now, v= dx/dt

50(dx/dt)^-1 = t +0.4

50dt/dx = t + 0.4

Using variable separation

50/(t+0.4) dt = dx

Integrate both sides

∫50/(t+0.4) dt = ∫ dx

50 In(t+0.4) = x

t ranges from 0 to 4.6seconds

50In(4.6+0.4)—50In(4.6-0.4) = x''

x'' = 50In(5) —50In(4.2)

x'' = 8.72m

Then, total distance is

x = x' + x''

x = 416.67+8.72

x = 425.39m

The total distance travelled in both cases is 425.39m

5 0
3 years ago
Read 2 more answers
Assuming a 8 kilogram bowling ball moving at 2 m/s bounces off a spring at the same speed that had before bouncing what is the a
Naya [18.7K]

a) 32 kg m/s

Assuming the spring is initially at rest, the total momentum of the system before the collision is given only by the momentum of the bowling ball:

p_i = m u = (8 kg)(2 m/s)=16 kg m/s

The ball bounces off at the same speed had before, but the new velocity has a negative sign (since the direction is opposite to the initial direction). So, the new momentum of the ball is:

p_{fB}=m v_b =(8 kg)(-2 m/s)=-16 kg m/s

The final momentum after the collision is the sum of the momenta of the ball and off the spring:

p_f = p_{fB}+p_{fS}

where p_{fS} is the momentum of the spring. For the conservation of momentum,

p_i = p_f\\p_i = p_{fB}+p_{fS}\\p_{fS}=p_i -p_{fB}=16 kg m/s -(-16 kg m/s)=32 kg m/s


b) -32 kg m/s

The change in momentum of bowling ball is given by the difference between its final momentum and initial momentum:

\Delta p=p_{fb}-p_i=-16 kg m/s - 16 kg m/s=-32 kg m/s


c) 64 N

The change in momentum is equal to the product between the average force and the time of the interaction:

\Delta p=F \Delta t

Since we know \Delta t=0.5 s, we can find the magnitude of the force:

F=\frac{\Delta p}{\Delta t}=\frac{-32 kg m/s}{0.5 s}=-64 N

The negative sign simply means that the direction of the force is opposite to the initial direction of the ball.


d) The force calculated in the previous step (64 N) is larger than the force of 32 N.

5 0
3 years ago
Other questions:
  • What is your opinion on Moonman? ( Do not delete this saying it is "racist". it is simply a character from a commercial called M
    10·1 answer
  • What kind of map might have diagrams of air pressure?
    11·1 answer
  • A stress of 210 MPa is applied to a low-carbon steel with an elastic modulus of 211 GPa. After the stress is applied and then re
    11·1 answer
  • A 2.00-kg object is attached to a spring and placed on a frictionless, horizontal surface. A horizontal force of 20.0 N is requi
    5·1 answer
  • Consider two particles A and B. The angular position of particle A, with constant angular acceleration, depends on time accordin
    14·1 answer
  • The energy band gap of GaAs is 1.4eV. calculate the optimum wavelength of light for photovoltaic generation in a GaAs solar cell
    7·1 answer
  • Projectile motion physics question 11 please​
    11·1 answer
  • A bullet is fired vertically upward a velocity of 80m/s to what height will the bullet rise above the point of projection​
    6·1 answer
  • Which statement accurately describes current electricity?
    11·1 answer
  • How to play track and field
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!