To determine the distance of the light that has traveled given the time it takes to travel that distance, we need a relation that would relate time with distance. In any case, it would be the speed of the motion or specifically the speed of light that is travelling which is given as 3x10^8 meters per second. So, we simply multiply the time to the speed. Before doing so, we need to remember that the units should be homogeneous. We do as follows:
distance = 3x10^8 m/s ( 8.3 min ) ( 60 s / 1 min ) = 1.494x10^11 m
Since we are asked for the distance to be in kilometers, we convert
distance = 1.494x10^11 m ( 1 km / 1000 m) = 149400000 km
Answer:
2000 kg
Explanation:
Given that Which will have a larger momentum when moving at the same speed: a 2,000-kg truck or a 1,000-kg sedan
According to the definition of momentum, momentum is the product of mass and velocity.
That is,
Momentum = mass × velocity
Since velocity or speed is the same, then, the one of higher mass will have a greater momentum.
Therefore, the 2000 kg truck will have the greater momentum.
Momentum = mass x velocity, so 500kg x 2m/s = 1000 kg m/s
Answer:
Explanation:
Atoms form chemical bonds to make their outer electron shells more stable. ... An ionic bond, where one atom essentially donates an electron to another, forms when one atom becomes stable by losing its outer electrons and the other atoms become stable (usually by filling its valence shell) by gaining the electrons.