Answer:
0.466 (3 sig. fig.)
Explanation:
Frictional force acting on the box = 5.00×10^2xsin25
Normal force acting on the box = 5.00×10^2xcos25
coefficient of friction = 0.466 (3 sig. fig.)
Slowly; Boiling Point; Decrease; Decrease; Vibrate in place.
As temperature drops, so does thermal energy, and particle motion drops. The same trends in temperature, thermal energy, and motion applys to phases in decreasing order: gas>liquid>solid. The particle motion is always vibrations in place for solids because they are very tightly packed compared to liquids and gases.
Answer:
= 33.33 cm
Explanation:
Given:
When mass,
=21 kg
distance travelled is
= 140 cm
When mass,
=5 kg
distance travelled is
= ?
Hooke's law state that within elastic limit, when an external force is applied to a body, the body gets deformed and when the force is released the gets back to its original form.
Therefore according to the question,


= 33.33 cm
Distance travelled is 33.33 cm when mass is 5 kg.
Answer:
Same magnitude of the 10 nc charge cause the electric field is external.
Explanation:
To do a better explanation, let's go and suppose we have an electric field of, 1300 N/C with a 10 nC charge.
As the system we are talking about is really big, and the charge is small, we can assume always if the charge is sitting right in the same point where the electric field is, then, the electric field would not suffer any kind of alteration in it's value. Therefore, no matter what value of the charge is sitting here, the electric field is independent of the charge, so it would not feel any alteration. However, the force that the charge is feeling would be stronger than in the first case.
F = qE
If charge is doubled, then the force would be bigger in the second case than in the first case, but electric field remain the same value.
Explanation:
The given data is as follows.
mass = 0.20 kg
displacement = 2.6 cm
Kinetic energy = 1.4 J
Spring potential energy = 2.2 J
Now, we will calculate the total energy present present as follows.
Total energy = Kinetic energy + spring potential energy
= 1.4 J + 2.2 J
= 3.6 Joules
As maximum kinetic energy of the object will be equal to the total energy.
So, K.E = Total energy
= 3.6 J
Also, we know that
K.E = 
or, v = 
= 
= 
= 6 m/s
thus, we can conclude that maximum speed of the mass during its oscillation is 6 m/s.