A standard 60 W light bulb has a voltage of 130 volts. So, we use this conversion, the Faraday's constant which is equal to approximately 96,500 Coulombs per mole electron, and the Avogadro's number equal to 6.022×10²³ particles/mole . The solution is as follows:
W = Energy/time
60 W = x J/1 s
x = 60 J = 60 C·V
(60 C·V)*(1/130 V)*(1 mole e/96,500 C)*(6.022×10²³ electrons/mole electron)
= 2.88×10¹⁸ electrons
Answer:
B. Objects do not have to touch each other to experience a force.
Explanation:
For example ..One of the noncontact forces is magnetic force whereby a magnetic object will be attracted to another magnetic object of oppsite charged particles, through waves called electromagnetic waves. On the other hand, the two magnetic objects of similar charged particles can repel through electromagnetic waves..
The acceleration due to gravity would be 5.95 m/s²
A force is known to be a push or pull and it is the change in momentum per time. It can be expressed by using the relation.
- Force = mass × acceleration.
From the parameters given:
- Mass = 105 kg
- Force = 625 N
By replacing the given values into the above equation, we can determine the acceleration.
∴
625 N = 105 kg × acceleration.

acceleration = 5.95 N/kg
acceleration = 5.95 m/s²
Learn more about acceleration(a) here:
brainly.com/question/14344386
If the object being represented is going both up and to the right.