Specific heat. The definition of specific heat is the amount of energy required to raise the temperature of 1g of a substance by 1K or 1°C.
Answer:
Explanation:
Given
Distance between two loud speakers 
Distance of person from one speaker 
Distance of person from second speaker 
Path difference between the waves is given by

for destructive interference m=0 I.e.




frequency is given by

where 

For next frequency which will cause destructive interference is
i.e.
and 


frequency corresponding to this is

for 


Frequency corresponding to this wavelength

Complete question :
NASA is concerned about the ability of a future lunar outpost to store the supplies necessary to support the astronauts the supply storage area of the lunar outpost where gravity is 1.63m/s/s can only support 1 x 10 over 5 N. What is the maximum WEIGHT of supplies, as measured on EARTH, NASA should plan on sending to the lunar outpost?
Answer:
601000 N
Explanation:
Given that :
Acceleration due to gravity at lunar outpost = 1.6m/s²
Supported Weight of supplies = 1 * 10^5 N
Acceleration due to gravity on the earth surface = 9.8m/s²
Maximum weight of supplies as measured on EARTH :
Ratio of earth gravity to lunar post gravity:
(Earth gravity / Lunar post gravity) ;
(9.8 / 1.63) = 6.01
Hence, maximum weight of supplies as measured on EARTH should be :
6.01 * (1 × 10^5)
6.01 × 10^5
= 601000 N
Answer:
i) 0.9504
ii) 0.0452
Explanation:
Given data: reliability of hydraulic brakes= 0.96
reliability of mechanical brakes = 0.99
So the probability of stopping the truck = 0.96×0.99= 0.9504
At low speed
case: A works and B does not
= 0.96×(1-0.99) = 0.0096
case2 : B works and A does not
= 0.99×(1-0.96) = 0.0396
Therefore, probality of stopping = 0.0096+0.0396 = 0.0492
To solve this problem we will use the kinematic equations of angular motion, starting from the definition of angular velocity in terms of frequency, to verify the angular displacement and its respective derivative, let's start:



The angular displacement is given as the form:
In the equlibrium we have to
and in the given position we have to

Derived the expression we will have the equivalent to angular velocity

Replacing,

Finally

Therefore the maximum angular displacement is 9.848°