Answer:
1) The Kelvin temperature cannot be negative
2) The Kelvin degree is written as K, not ºK
Explanation:
The temperature of an object can be written using different temperature scales.
The two most important scales are:
- Celsius scale: the Celsius degree is indicated with ºC. It is based on the freezing point of water (placed at 0ºC) and the boiling point of water (100ºC).
- Kelvin scale: the Kelvin is indicated with K. it is based on the concept of "absolute zero" temperature, which is the temperature at which matter stops moving, and it is placed at zero Kelvin (0 K), so this scale cannot have negative temperatures, since 0 K is the lowest possible temperature.
The expression to convert from Celsius degrees to Kelvin is:

Therefore in this problem, since the student reported a temperature of -3.5 ºK, the errors done are:
1) The Kelvin temperature cannot be negative
2) The Kelvin degree is written as K, not ºK
Ground is used for agriculture, sink water, hose water, and even drinking water (from the aqueducts).
Answer:

Explanation:
Hello,
In this case, the combustion of methane is shown below:

And has a heat of combustion of −890.8 kJ/mol, for which the burnt moles are:

Whereas is consider the total released heat to the surroundings (negative as it is exiting heat) and the aforementioned heat of combustion. Then, by using the ideal gas equation, we are able to compute the volume at 25 °C (298K) and 745 torr (0.98 atm) that must be measured:

Best regards.
Answer:
The answer to your question is
Explanation:
Data
12.5 g of reactant
Balanced Reaction 1
TiBr₄ + 2H₂ ⇒ Ti + 4HBr
Molar mass of TiBr₄ = 48 + (4 x 80) = 368 g
Atomic mass of Ti = 48 g
Molar mass of HBr = 1 + 80 = 81
368 g of TiBr₄ ---------------- 48 g of Ti
12.5 g of TiBr₄ -------------- x
x = (12.5 x 48) / 368
x = 1.63 g of Ti
368 g of TiBr₄ ----------------4(81) g of HBr
12.5 g of TiBr₄ ------------- x
x = (12.5 x 324) / 368
x = 11 g of HBr
Balanced reaction 2
3SiH₄ + 4NH₃ ⇒ Si₃N₄ + 12H₂
Molar mass of SiH₄ = 28 + 4 = 32
Molar mass of Si₃N₄ = 28 x 3 + 14 x 4 = 84 + 56 = 140 g
Atomic mass of H₂ = 2 g
3(32) g of SiH₄ --------------- 140 g of Si₃N₄
12.5 g of SiH₄ -------------- x
x = 18.2 g of Si₃N₄
3(32) g of SiH₄ --------------- 24 g of H₂
12.5 g of SiH₄ -------------- x
x = 3.125 g of H₂